Explore
Also Available in:

빛의 여행 시간 : 빅뱅의 걸림돌

167-light-diagram
(1) 빅뱅으로 주장되는 사건 초기에 점 A와 B는 서로 다른 온도로 시작했다. 
(2) 오늘날 지점 A와 B는 같은 온도를 가지고 있다. 그러나 그들은 서로 빛을 교환할만한 충분한 시간을 가지지 못했다.
그림을 자세히 보려면 여기를 클릭하세요.

저자: Jason Lisle
번역자: 한국창조과학회 (creation.kr)

‘먼 곳으로부터의 별빛 문제(distant starlight problem)‘는 성서적 창조를 반대하기 위한 논쟁으로 자주 사용되고 있다. 수십억 년을 믿는 사람들은 가장 먼 은하계로부터 빛이 단지 6,000 년 동안에 지구에 도저히 도달할 수 없다고 주장한다. 그러나 빛의 여행시간(light-travel–time) 논쟁은 수십억년설과 빅뱅설을 옹호하고, 성경을 부정하기 위하여 사용될 수 없다. 왜냐하면 빅뱅 모델도 또한 빛의 여행시간 문제가 동일하게 존재하기 때문이다.

배경

1964/5 년에, 펜지아스(Penzias)와 윌슨(Wilson)은 지구가 관측할 수 있는 가장 먼 우주에서 오는 것으로 보이는 희미한 마이크로파 복사선(a faint microwave radiation)에 뒤덮여 있다는 사실을 발견했고, 이로써 1978년에 노벨 물리학상을 수상했다.1 마이크로파의 이 우주배경복사(Cosmic Microwave Background, CMB)는 우주의 모든 방향에서 오며, 특정한 온도를 가지고 있는 것으로 밝혀졌다.2,3 우주배경복사의 발견은 빅뱅 모델의 예측이 성공한 것이라고 보기도 하지만,4 그것은 실제로는 빅뱅에 하나의 문제꺼리이다. 왜냐하면 우주배경복사의 정확히 균일한 온도가 우주기원에 관한 빅뱅모델에서 빛의 여행시간 문제를 야기하고 있기 때문이다.

문제

우주배경복사의 온도는 본질적으로 어디에서나 어느 방향으로나 동일하다5(1/100,000의 정밀도로).6 그러나, (빅뱅 이론가에 따르면) 초기의 우주에서, 우주배경복사의 온도는7 초기 조건의 무작위성 때문에 우주의 다른 장소에서 매우 달랐을 것이다. 만일 이들 다른 지역들이 근접해 있었다면, 같은 온도가 되었을 수도 있다. 조금 멀리 떨어진 지역들은 복사선(radiation, 즉 빛8)을 주고받으면서 평형에 이르렀을 것이다. 즉, 복사선이 온도가 높은 지역에서 낮은 지역으로 에너지를 운반하여 같은 온도가 되게 하였을 것이다.

문 제는 이것이다. 빅뱅설의 시간척도(timescale)를 가정하더라도, 우주의 넓은 지역에 빛이 도달할 만한 시간이 경과하지 않았다는 점이다. 그렇다면. 현재의 우주배경복사는 우주의 다른 지역들이 서로 빛을 교환할 방법 없이 어떻게 정확히 균일한 온도를 가지게 되었을까?9 이것이 빛의 여행시간 문제 (light-travel–time problem)인 것이다.10

빅 뱅 모델은 우주가 수십억 년이 되었다고 가정하고 있다. 이 시간척도는 빛이 먼 우주에서 지구에 도달하기에는 충분한 시간이지만, 빛이 가시적인 우주의 한 끝에서 다른 끝까지 여행하기에는 불충분하다. 빛이 방출되었을 시점인 아마도 빅뱅 후 300,000 년경에, 우주는 이미 빛이 그 시간에 여행할 수 있는 거리의 적어도 10배나 더 먼 거리에 있는(‘지평선(horizon)’이라 불리는: 빛이 이동한 최대거리의 저쪽 경계선, 즉 이 경계선 건너편의 빛은 아직 도달하지 않았으므로 아무것도 보이지 않는다. 역자 주) 공간들에서 이미 균일한 온도를 가지고 있었다.11 그렇다면 어떻게 이들 지역들은 같은 온도가 되었을까? 가시적인 우주의 한 쪽 끝이 정보를 교환할 충분한 시간도 갖지 못했는데 어떻게 다른 쪽 끝을 알게 되었을까? 이것이 ‘지평선 문제(horizon problem)’ 라고 불려지는 것이다.12 세속적인 천문학자들이 여러 가능성을 제안했지만, 지금까지 만족할 만한 해답은 없다 (아래 박스글의 빅뱅설에서 빛의 여행시간 문제를 극복하려는 시도들을 참조하라)

요약

빅 뱅설은 가시적인 우주의 양편 끝 지역이 복사선에 의해서 에너지를 교환했어야만 성립된다. 왜냐하면 가시적인 우주의 양편 끝 지역의 우주배경복사의 온도가 균일하게 나타나기 때문이다. 그러나 빛은 이 거리를 (우주의 한쪽 끝에서 다른 쪽 끝까지를) 여행할 만한 충분한 시간이 없었다. 성서적 창조론자들과 빅뱅 지지자들은 모두 각자의 모델 속에서 빛의 여행시간 문제를 설명하기 위해 여러 가지 해법들을 제시해 왔다. 그러므로 빅뱅 지지자들은 자기들도 시도하고 있는 새로운 가설이나 해법의 제시를 창조론자들이 시도한다고 비난해서는 안 된다. 빛의 지평선 문제는 이를 해결해보려는 여러 추측성 가설들이 증거하고 있는 것처럼 빅뱅 지지자들에게도 심각한 어려움으로 남아 있다. 그러므로 빅뱅 지지자들이 자기들의 논리에서도 동일한 문제인 빛의 여행시간 문제를 성서적 창조를 반대하기 위한 논쟁으로 사용하는 것은 이치에 맞지 않다.

빅뱅설에서 빛의 여행시간 문제를 극복하려는 시도들

현 재 가장 인기 있는 이론은 1981년에 앨런 구스(Alan Guth)가 제시한 ‘인플레이션(inflation, 급팽창)’ 이론이라고 불리는 것이다. 이 시나리오에서는, 우주의 팽창율(즉 우주 자체)은 빅뱅 초기의 ‘급팽창 단계(inflation phase)’에서 엄청나게 가속되었다는 것이다. 이 팽창이 발생하기 전에, 우주의 다른 지역들은 매우 가까이 접촉해 있었다. 따라서, 이 지역들은 복사선을 교환하여 같은 온도를 가질 수 있었고, 그 후에 매우 빠르게 밀려나며 (빛의 속력보다 훨씬 빠르게1) 팽창했다는 것이다. 인플레이션 이론에 따르면, 우주의 먼 지역들은 오늘날에는 빛에 의한 접촉이 불가능해도, 우주가 작았던 팽창 전에는 접촉이 가능했다는 것이다.

그 러나 인플레이션 시나리오는 매우 불확실하다. 여러 다른 인플레이션 모델들이 제시되고 있지만, 이들 또한 많은 문제점들을 가지고 있다. 더군다나 어느 인플레이션 모델이 맞는지, 아니면 맞는 모델이 있기나 한 것인 지에 대해서도 의견통일이 되지 않고 있다. 어떤 물리적 작용이 급팽창의 원인이 되었는지에 관하여 알려진 것이 없고, 많은 추측들만 난무할 뿐이다. 또한 급팽창이 일단 시작된 후 어떻게 그 팽창단계가 멈추게 되었는지에 관하여도, 즉 명예로운 퇴장의 방법도 모르고 있다.2 많은 인플레이션 모델들(가령 구스의 최초 모델과 같은4)에서의 예측들은 관측과 일치되지 않아6 틀린 것으로 알려져 있다.3 또 한, 인플레이션 모델의 여러 측면은 현재 검증이 불가능하다.

일부 천문학자들은 인플레이션 모델을 받아들이지 않고, 빛의 지평선 문제에 다른 가능한 해결책들을 제안했다. 이들은 중력상수(gravitational constant)가 시간에 따라 변화했다는 가설5, 우주 순환(cyclic universe)을 포함하는 에크파이로틱 모델(ekpyrotic model)6, 빛이 가상의 차원을 통한 지름길(shortcuts)로 이동한다는 시나리오7, 존재하지 않는 특이점(null-singularity) 모델8, 광속이 과거에 매우 빨랐었다는 모델9,10 등을 포함하고 있다. (창조론자들 또한 광속의 변화가 성서적 창조관에서 본 빛의 여행시간 문제를 해결할지도 모른다 라고 지적했었다.11)

이렇게 상이한 가설들을 고려할 때, 지평선 문제(horizon problem)가 결정적으로 해결되지는 않았다라고 보는 것이 옳다.

참고 문헌및 메모

  1. This notion does not violate relativity, which merely prevents objects travelling faster than c through space, whereas in the inflation proposal it is space itself that expands and carries the objects with it.
  2. Kraniotis, G.V., String cosmology, International Journal of Modern Physics A15(12):1707–1756, 2000.
  3. Wang, Y., Spergel, D. and Strauss, M., Cosmology in the next millennium: Combining microwave anisotropy probe and Sloan digital sky survey data to constrain inflationary models, The Astrophysical Journal 510:20–31, 1999.
  4. Coles, P. and Lucchin, F., Cosmology: The Origin and Evolution of Cosmic Structure, John Wiley & Sons Ltd, Chichester, p. 151, 1996.
  5. Levin, J. and Freese, K., Possible solution to the horizon problem: Modified aging in massless scalar theories of gravity, Physical Review D (Particles, Fields, Gravitation, and Cosmology) 47(10):4282–4291, 1993.
  6. Steinhardt, P. and Turok, N., A cyclic model of the universe, Science 296(5572):1436–1439, 2002.
  7. Chung, D. and Freese, K., Can geodesics in extra dimensions solve the cosmological horizon problem? Physical Review D (Particles, Fields, Gravitation, and Cosmology) 62(6):063513-1–063513–7, 2000.
  8. Célérier, M. and Szekeres, P., Timelike and null focusing singularities in spherical symmetry: A solution to the cosmological horizon problem and a challenge to the cosmic censorship hypothesis, Physical Review D 65:123516-1–123516–9, 2002.
  9. Albrecht, A. and Magueijo, J., Time varying speed of light as a solution to cosmological puzzles, Physical Review D (Particles, Fields, Gravitation, and Cosmology) 59(4):043516-1–043516–13, 1999.
  10. Clayton, M. and Moffat, J., Dynamical mechanism for varying light velocity as a solution to cosmological problems, Physics Letters B 460(3–4):263–270, 1999.
  11. For a summary of the c-decay implications, see: Wieland, C., Speed of light slowing down after all? Famous physicist makes headlines, Journal of Creation 16(3):7–10, 2002.

참고 문헌및 메모

  1. Coles, P. and Lucchin, F., Cosmology: The Origin and Evolution of Cosmic Structure, John Wiley & Sons Ltd, Chichester, p. 91, 1996. 텍스트로돌아 가기.
  2. 2.728 K (-270.422°C). 텍스트로돌아 가기.
  3. Peacock, J.A., Cosmological Physics, Cambridge University Press, p. 288, 1999. 텍스트로돌아 가기.
  4. However, the existence of CMB was actually deduced before big bang cosmology from the spectra of certain molecules in outer space. 텍스트로돌아 가기.
  5. Excluding sources in our galaxy. 텍스트로돌아 가기.
  6. Peebles, P.J.E., Principles of Physical Cosmology, Princeton University Press, p. 404, 1993. 텍스트로돌아 가기.
  7. For convenience, the commonly understood term CMB will be used without implying that the radiation peaked at the same wavelength in all epochs of the model. 텍스트로돌아 가기.
  8. Infrared radiation is part of the spectrum of light. 텍스트로돌아 가기.
  9. This is an internal inconsistency for the big bang model. It is not a problem for a creation model; God may have created the distant regions of the universe with the same temperature from the beginning. 텍스트로돌아 가기.
  10. Misner, C., Mixmaster Universe, Physical Review Letters 22(20):1071–1074, 1969. 텍스트로돌아 가기.
  11. Ref. 1, p. 136. 텍스트로돌아 가기.
  12. Lightman, A., Ancient Light, Harvard University Press, London, p. 58, 1991. 텍스트로돌아 가기.