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Plimpton 322: 
A Sample of Ancient Mathematics

DAVID MALCOLM

There is an ancient Babylonian clay tablet, identified as 
Plimpton 322, at Columbia University. The code name 
identifies it as catalogue item 322 in the G. A. Plimpton 
collection. Figure 1 shows a representation of this clay 
tablet, which is written in Old Babylonian script, so it is 
conventionally dated at between 1900 and 1600 b c .

The tablet shows a high level of mathematical ability at 
a very early date, as we will try to explain.

Perhaps the reader would like to try to understand what 
this tablet contains without being told, so we will start off 
by explaining how to read the numbers on it without 
actually giving the interpretation placed on it by modern 
mathematicians.

CUNEIFORM SYMBOLS

This particular cuneiform language is well understood; 
and the tablet contains mainly numbers arranged in col­

umns. The boomerang symbol represents 10, and the 
vertical trumpet represents 1. Stylised combinations of 
boomerangs represent 20 through 50, while combinations 
of trumpets represent 2 through 9. For example, the first 
entry in column I is a 1 followed by 59 followed by 15. It 
is also a well-known fact that the Babylonians used a 
sexigesimal number system (that is, base 60) so that the first 
number in column II (a 1 followed by a 59) represents 1 x 
60 + 59, or 119; and the first number in column III (a 2 
followed by 49) represents 2 x 60 + 49, or 169. The 
numbers in column IV are simply line numbers running 
from 1 to 15.

The tablet Plimpton 322 is depicted in the literature,1 
which is slightly different from what we show in Figure 
1:—
(1) Areas that are damaged on the actual tablet are here 

reconstructed.
(2) Four mistakes made by the Babylonian mathematician, 

Column I Column II Column III Column IV

Figure 1. A representation of clay tablet Plimpton 322, written in Old Babylonian cuneiform script.



as reported in the literature,2 are shown here corrected.
(3) A fifth mistake, not reported in the literature, which 

occurs in column I is also shown corrected.
(4) The four columns of numbers have actual headings, 

which the experts have not been able to translate 
exactly, but both column I and column III contain a 
word which translates to ‘diagonal’.
It should also be noted that the Babylonians had no 

zero. In fact the number in line 1 column I is 1,59,0,15 and 
the number in line 13 column I is 1,27,0,3,45 (just using a 
comma to separate between the numbers). Neither did they 
have an equivalent of a decimal point; the first column 
should be read as 1 followed by a series of decreasing 
fractions.

Now we should give due credit to the mathematicians 
who deciphered this clay tablet.3 Who would have guessed 
that the numbers are mathematical? They could have just 
been part of a shopping list, or perhaps a price list.

CORRECTIONS

As noted above, five mistakes on the original tablet 
have been corrected in Figure 1. We will explain these as 
a final clue as to how the ancient mathematicians may have 
arrived at Plimpton 322.
(1) In line 9 column II, the tablet contains 9,1 whereas it 

should contain 8,1. It is presumed this is a simple 
transcription error.

(2) In line 13 column II, the tablet contains 7,12,1 which is 
the square of the correct figure of 2,41.

(3) In line 15 column III, the tablet contains 53 which is half 
of the correct figure of 1,46.

(4) In line 2 column III, the tablet contains 3,12,1 instead 
of the correct figure of 1,20,25. One fairly complex 
explanation has been offered as to how this mistake 
may have been made.4

(5) In line 8 column I the tablet contains 1,41,33,59,3,45 
whereas the correct figure is 1,41,33,45,14,3,45. It 
looks like a carry has occurred into the wrong column.5

Figure 2. A right-angled triangle.

PYTHAGORAS

So what do the numbers mean? First let’s recall 
Pythagoras’ theorem. The square on the hypotenuse of a 
right-angled triangle equals the sum of the squares on the 
other two sides. In terms of the triangle shown in Figure 2, 
that is:—

d2 = l 2 + b2

Now suppose that we wanted to obtain a number of such 
triangles in which l,b  and d all have integral values. Very 
many such triangles exist, but most of us probably only 
know of one —  the well-known 3,4,5 triangle. Which 
shows that there was some scholar in ancient Babylon who 
was more knowledgeable than us.

Plimpton 322 is in fact a list of 15 different triangles of 
this type, with angle A  in the range of 30 to 45 degrees. Each 
line refers to a different such triangle. Column II is b and 
column III is d, while l  is not shown. The tablet does show 
evidence of having been broken along the left-hand edge, so 
perhaps the column of l  values has been lost. Line 11 is in 
fact the familiar 3,4,5 triangle, except that each side has 
been multiplied by 15. (It is the only one which has had each 
side multiplied by a common factor.)

TRIGONOMETRY

So each line represents a different right-angled triangle 
with integral sides, and angle A in the range of 30 to 45 
degrees. And they are arranged in order of decreasing angle 
A, or of (d/l ) squared, which is what column I contains. 
Howard Eves, in his book,6 observes that this is the square 
of the secant of angle A, thus introducing the thought that 
this relates to trigonometry.

The fact that the word ‘diagonal’ occurs in the column 
headings makes it clear that whoever put it together knew 
that it was a geometric problem as well as a problem in 
number theory. We quote the authority Otto Neugebauer 
as to the translation of these headings:—

‘Columns II and III are headed by words which might 
be translated as “solving number o f the width” and 
“solving number o f the diagonal” respectively. “Solv­
ing number" is a rather unsatisfactory rendering for 
a term which is used in connection with square roots 
and similar operations and has no exact equivalent in 
our modern terminology . . . The word “diagonal” 
occurs also in the heading o f the first column but the 
exact meaning o f the remaining words escapes us.’7 
Unlike our modern decimal system, the Babylonians 

used exact relations. In the fifth line for example, the value 
of the secant squared of A is given as:—

1 + 48/60 + 54/(60)2 + 1/(60)3 + 40/(60)4 

which is the exact answer (for you to check, the sides are 72,



65 and 97). In the case of these triangles, how did they 
manage to get exact answers for all the values of sec2(A)? 
Not only did the Babylonians know Pythagoras’ theorem, 
well before the time of Pythagoras, but they were also 
apparently familiar with the parametric form of Pythago­
rean triples8,9:—

l  = 2pq 
b = p 2 - q2 
d  = p 2 + q2

where p  and q are arbitrary integers, subject only to the 
conditions that they are relatively prime, not both odd, and 
p  is greater than q. Additionally, for the Babylonian system 
they could only contain the prime factors 2, 3 and 5. On this 
basis it is clear that 1, the denominator of the required 
function, can only have prime factors of 2, 3 and 5, so an 
exact finite result will always be obtained with sexagesimal 
arithmetic.

Now the question arises as to why these particular 
triangles have been chosen, and what other triangles exist? 
In fact there are surprisingly few others. With the benefit 
of a digital computer, a program was written to search for 
triangles with angle A falling in the range of 30 to 45 
degrees. The result was that there are only three other such 
triangles.10 Figure 3 gives the complete table. We limited 
the maximum values of p  and q to 125, because the standard 
tables of reciprocals used by the Babylonian mathemati­
cians only went up to 81, although 125 was ‘well known as 
the canonical example for the computation of reciprocals

beyond the standard table’.11 Of the three extra triangles, 
two have p  = 125 which may have been difficult for them 
to find, and the other one is strictly outside of the range of 
A as recorded on the tablet (p= 16, q=9 gives angle A as 
31:17:04, which is lower than 31:53:27, the last entry on the 
tablet). So they didn’t miss out many at all.

CONCLUSIONS

This particular tablet has been recognised for its math­
ematical value, but one can’t help wondering if other 
records exist of equal or greater significance in museum 
collections somewhere.

So in summing up, it is clear that the Babylonians had 
an advanced knowledge of mathematics, and Pythagoras’ 
theorem was known a thousand years before Pythagoras.12 
The mathematics we have looked at is not easy for us to 
comprehend, which should in itself cause us to be impressed 
with the mathematical knowledge of the ancient 
Babylonians.

Authors with an evolutionary outlook use words like 
‘most remarkable’ and ‘truly remarkable’ to describe the 
knowledge evidenced by this clay tablet.13 But it should 
hardly be surprising to those who take the Bible seriously. 
We don’t see man as increasing in intelligence, and we are 
led to believe that Babylon was the centre of world learning 
after the time of the Flood. Our authority Eves goes on in 
his next section to discuss the mathematics of Egypt, and 
says:—

‘The mathematics o f Egypt, contrary to much popular 

ANGLE A p q l b d COLUMN I COLUMN II COLUMN III

44:45:37 12 5 120 119 169 1 59 0 15 1 59 2 49
44:15:10 64 27 3456 3367 4825 1 56 56 58 14 50 6 15 56 7 1 20 25
43:47:14 75 32 4800 4601 6649 1 55 7 41 15 33 45 1 16 41 1 50 49
43:16:17 125 54 13500 12709 18541 1 53 10 29 32 52 16 3 31 49 5 9 1
42:04:30 9 4 72 65 97 1 48 54 1 40 1 5 1 37
41:32:40 20 9 360 319 481 1 47 6 41 40 5 19 8 1
40:18:55 54 25 2700 2291 3541 1 43 11 56 28 26 40 38 11 59 1
39:46:13 32 15 960 799 1249 1 41 33 45 14 3 45 13 19 20 49
38:43:05 25 12 600 481 769 1 38 33 36 36 8 1 12 49
37:26:14 81 40 6480 4961 8161 1 35 10 2 28 27 24 26 40 1 22 41 2 16 1
36:52:12 2 1 4 3 5 1 33 45 3 5
35:46:30 125 64 16000 11529 19721 1 31 9 9 25 42 2 15 3 12 9 5 28 41
34:58:34 48 25 2400 1679 2929 1 29 21 54 2 15 27 59 48 49
33:51:18 15 8 240 161 289 1 27 0 3 45 2 41 4 49
33:15:43 50 27 2700 1771 3229 1 25 48 51 35 6 40 29 31 53 49
31:53:27 9 5 90 56 106 1 23 13 46 40 56 1 46
31:17:04 16 9 288 175 337 1 22 9 12 36 15 2 55 5 37
30:06:58 125 72 18000 10441 20809 1 20 11 16 19 14 24 2 54 1 5 46 49

Figure 3. The complete table of Pythagorean triples for triangles with angle A falling in the range 30–45° (left), compared with the corrected Babylonian 
numbers as translated from Plimpton 322 (right), which can then be compared with the cuneiform on the representation in Figure 1.



opinion, never reached the level attained by 
Babylonian mathematics’.14 
Let us just consider one last thought. Why does the 

tablet contain so many errors? Of the 15 triangles, at least 
five contained an error. Perhaps Plimpton 322 was just an 
assignment done by a student, and in fact the knowledge of 
the experts far exceeded the level of knowledge shown on 
this clay tablet.
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