Also Available in:

산록완사면(페디먼트)

:

수로화되어 흘러갔던 홍수 물로 빠르게 파여졌다

저자:
번역자: 한국창조과학회 (creation.kr)

Tobacco-Root-Mountains
그림 1. 미국 몬타나 남서부, 토바코 루트 산맥(Tobacco Root Mountains)의 서쪽 경사면을 따라 있는 산록완사면. 이 산록완사면의 길이는 산 정면과 평행하게 약 18km 길이이며, 폭은 정면에 수직 방향으로 5km이고, 인접한 강보다 약 300m 더 높다.

동일과정설의 ‘천천히 그리고 점진적’이라는 믿음은 지형(landforms)이라고 불리는 지표면의 많은 특징들을 설명하는데 큰 어려움을 만들어낸다. 그러나 지표면의 많은 지형들을 대홍수 시에 지표면을 흘러갔던 홍수물의 유출(Flood runoff)로 쉽게 설명될 수 있다.

지형은 크게 두 가지 유형으로 나눌 수 있는데, 전 지구적 홍수 말에 대륙으로부터 물이 물러가면서, 판상흐름(sheet flow) 단계에서 침식되어 형성된 것과, 수로화 단계 동안에 형성된 것으로 나눌 수 있다.1 이 잡지의 이전 글에서 판상침식(sheet erosion)의 여러 특성들을 언급했으므로, 이 기사에서는 수로화 단계의 지형, 즉 산록완사면(pediment, 山麓緩斜面)을 다루기로 한다.

산록완사면이란 무엇인가?

산록완사면이란 산의 정면에서 계곡의 중앙부를 향하여 매우 완만하게 기울어진 편평한 침식 표면을 말한다. 그것은 비교적 넓은 지역에서도 형성될 수 있었으며, 때로는 면적이 300km² 을 넘는 것도 있다. 그것은 본질적으로 산, 산맥, 산등성이, 또는 고원(그림 1)의 기슭에 평탄화된 면(= 물에 의해 평평하게 침식된 대규모 표면)이다. 대부분의 산록완사면은 대홍수의 수로화 단계 동안에 빠르게 깎여진 계곡에서 발견된다.2

산록완사면은 지구 대륙의 대부분에서 공통적으로 발견된다. 이따금씩 습한 기후 지역에서도 발견되지만, 주로 건조기후 지역에서 볼 수 있다. 건조기후 지역은 침식이 적기 때문에, 산록완사면의 원래 모양이 유지될 가능성이 더 크다. 일부 계곡은 여러 층의 산록완사면과 그 잔존물을 보여주기도 한다.

산록완사면은 때로는 인접한 산에서 발견되는 암석에 침식되어 있다3, 반면에 다른 지역에서 침식은 계곡을 채우고 있는 두꺼운 퇴적암 층에 제한되어있다. 초기 지질학자들 중 일부는 산록완사면은 선상지(alluvial fans)였다고 생각했었다. 왜냐하면 그들은 유사하게 보였기 때문이다.4 그러나 예상됐던 비경화 된 선상지 모래, 자갈, 기타 입자들에서 발견되는 것이 아니라, 대부분 둥근 암석들의 얇은 층 아래에 있는 단단한 암석 표면에서 발견되면서, 지질학자들은 크게 놀랐다.5 그래서 산록완사면이란 단단한 암석의 침식 후에 남겨진 표면이다. 그리고 얇게 둥근 암석들이 덮여있는 것은 이 광범위한 침식의 원인에 대한 단서를 제공하고 있다. 때로는 그러한 ‘보호용’ 얇은 층이 전혀 없는 경우도 있지만, 오늘날의 침식이 산록완사면을 아직 파괴하지 않았다는 것은 산록완사면에 대한 침식 현상이 최근의 일임을 가리킨다.

산록완사면은 현저하게 평평하다.

Sheep-Mountain-water-gap
그림 2. 미국 와이오밍 주의 쉽산(Sheep Mountain)의 수극(water gap, 물에 의해 파여진 협곡 또는 협로)에 거의 수직으로 놓여있는 지층 위로 잘려져 있는 산록완사면.

산록완사면은 종종 광범위한 규모에 걸쳐 현저하게 평평하다.6 이 표면의 크기, 평탄도 및 풍부함은 그들이 어떻게 형성되었는지에 대한 많은 정보들을 제공해준다. 작은 스케일로서, 산에서 내려오는 수로와 시내는7 종종 산록완사면을 가로지르며 표면을 절단하고 있다(그림 2). 사실상, 대부분의 산록완사면은 산에서 멀리 떨어져 흘러가는 수로들에 의해서 절단되고 있지만, 마음속으로 수로를 지우고, 절단되지 않고 남아있는 표면을 다시 연결하면, 원래는 평평했던 표면이었음을 여전히 알아볼 수 있다. 저명한 지형학자인 도렌웬드(Dohrenwend)는 다음과 같이 썼다 :

확실히 모든 산록완사면의 가장 주목할만한 물리적 특성 중 하나는 표면의 대부분(또는 적어도 일부)이 일반적으로 평평하고, 굴곡이 없다는 것이다. 많은 대형 산록완사면은 일반적으로 국부적 기복이 수m 이하로 매끄럽고 규칙적이지만, 얕은 수로가 국소적으로 산록완사면 표면을 절개하여, 절개된 지형과 절개되지 않은 지형이 불규칙하게 뒤섞일 때는(patchworks) 보다 더 복잡한 형태의 지형이 발생한다.8

산록완사면은 둥근 자갈층으로 얇게 덮여있다.

Ruby-River-Valley
그림 3. 몬태나 남서부의 그레이블리 레인지(Gravely Range)의 서쪽 경사를 따라 루비강 계곡(Ruby River Valley)에 있는 산록완사면. 계곡을 채우고 있는 퇴적층은 오른쪽(동쪽)으로 기울어져 있는 반면, 산록완사면의 표면은 왼쪽(서쪽)으로 기울어져서 퇴적층을 낮은 각도로 평탄하게 절단하고 있음을 주목하라.

산록완사면을 덮고 있는 암석은 때로는 표석(boulder) 크기만 하며9, 일반적으로 둥글다. 암석은 물의 작용에 의해 둥글게 깎여졌기 때문에, 그것은 얇게 덮여있는 둥근 암석들과 산록완사면의 형성에 물이 관련되어 있음을 명확하게 나타낸다. 물 흐름에 의해 운반된 자갈들은 사포처럼 작용하여, 거친 표면을 깎아내고 매끄럽게 다듬어, 암석을 둥글게 만들었다. 자갈들은 평탄면(planation surface)과 거의 같은 방식으로 산록완사면을 형성했다.10 그림 3은 몬태나 남서부의 루비강 계곡(Ruby River Valley) 가장자리에 있는 산록완사면을 보여준다. 산록완사면은 퇴적암의 경사와11 반대방향으로 낮은 각도로 절단되어 있음에 주목하라.

오늘날의 침식은 훨씬 작은 규모로 일어나며, 통상적으로 강둑의 모습을 바꾸거나, 기존 표면을 파내는 것 정도에 불과하다. 이들 산록완사면의 엄청난 크기는 홍수 정도가 아닌, 역사적으로 관측된 그 어떤 것보다 훨씬 더 거대했던 대홍수 물과 관련된 사건을 나타낸다. 그것이 오늘날 산록완사면이 형성되지 않는 이유이다. 산록완사면은 거대한 양의 물을 포함하는, 과거의 어떤 과정에 의해서 깎여진 것이다.

동일과정설적 수수께끼

Coarse-gravel-veneer
그림 4. 그림 2의 산록완사면을 덮고 있는 얇은 층의 굵은 자갈들. 암석들은 일반적으로 둥글고, 그들 대부분은 옅은 색깔의 규암으로써, 주변 산에서 온 것이 아님을 주목하라.

성경의 대홍수를 받아들이지 않는 동일과정설 과학자들은 산록완사면의 기원을 100년이 넘게 설명하려고 시도해왔었다. 그러나 오늘날 산록완사면이 형성되지 않는다는 주된 이유 때문에 실패해왔다. 대신에 우리는 산록완사면이 절개되고 파괴되고 있는 것을 관측하고 있다.12,13,14 오늘날 산록완사면이 존재하는 곳에서는 물이 산록완사면을 가로질러 흐르면서, 물이 산록완사면을 절개하거나, 그 표면에 쇄설물을 퇴적시킨다.15 그러므로 흐르는 물은 현재 산록완사면을 형성하지 않는다. 크릭메이(C.H. Crickmay)는 다음과 같이 말했다 :

오늘날 어떤 지역을 평평하게 만드는 침식은 일어나지 않는다. 마모, 파쇄는 항상 거칠게 일어난다. 빗물로 인한 파여짐은, 심지어 이미 납작하고 매끄러운 지반 위로 흐를지라도, 고랑을 만드는 경향이 있다.16

도렌웬드(Dohrenwend)도 이렇게 말했다 :

13601-fig5
그림 5. 대홍수의 물이 아래 계곡으로 빠져나갈 때, 산록완사면이 산과 나란히 발달하는 것을 보여주는 개략도.(Peter Klevberg 그림).
산록완사면은 오랜 기간 동안 지형학적 연구의 대상이 되어왔다. 불행히도, 이 오랜 역사에도 불구하고, 연구 결과는 명확하지 않으며, 설득력도 없고, 산록완사면의 형성에 대한 신뢰할만한 과정을 명확하게 설명하지 못하고 있다.17

동일과정설 과학자들은 산록완사면의 기원을 설명하는 세 주요한 가설을 갖고 있다. 그러나 그것들 모두 치명적인 결함이 있다. 각 가설들은 주변의 산에서 물이 흘러 나와 지표면을 가로질렀다고 가정한다. 그들은 산록완사면을 덮고 있는 암석 일부가 주변의 산에서 온 것이 아니라, 먼 상류 지역에서 운반되어 왔다는 사실에도 불구하고, 그러한 가정을 하고 있다. 그림 4는 그림 3에 있는 산록완사면 위에 덮여져 있는 일반적으로 얇은 층의 둥근 암석(자갈)들을 보여준다. 이 산록완사면 위에 있는 대부분의 암석들은 규암으로써 단단한 변성된 사암이다. 이 규암의 가장 가까운 근원은 160km 이상 떨어져 있다. 산록완사면의 기원에 대한 논리적인 설명은 광범위한 지역을 뒤덮었던, 골짜기 측면을 따라 흘렀던, 강한 물 흐름에 의해 침식됐다는 것이다.

산록완사면은 노아 홍수 말기에 지표면을 흘러갔던 홍수 물로 생겨났다.

산록완사면은 노아 홍수 말기에 거대한 홍수 물이 아래 계곡으로 흐르며 바다로 들어갈 때 깎여졌다. 얇은 층으로 덮여있는 둥근 암석들은 물이 빠져 나가면서 점차 기세를 잃어갈 때 퇴적되었다. 일부 골짜기에서 볼 수 있는 다중의 산록완사면과 산록완사면 잔해는 유출 후반의 계곡 침식의 약동(pulse)으로 설명될 수 있다. 물러가던 물은 일부 산록완사면을 추가로 침식하면서, 약간의 잔해를 남겨놓았고, 때로는 중첩되게 새로운 산록완사면을 만들었다. 그림 5는 대홍수 말기에 골짜기를 따라 빠른 침식 흐름에 의해서, 산록완사면이 신속하게 형성되는 것을 보여주는 개략도이다. 산록완사면은 비평가들의 주장에도 불구하고, 지형학 분야에서 창세기 대홍수의 분명한 증거임을 보여주는 또 하나의 예인 것이다.

참고 문헌및 메모

  1. Walker, T., A biblical geologic model; in: Walsh, R.E. (Ed.), Proc. 3rd International Conference on Creationism, technical symposium sessions, Creation Science Fellowship, Pittsburgh, PA, pp. 581–592, 1994; biblicalgeology.net. 텍스트로돌아 가기.
  2. Oard, M.J., How valleys and canyons formed during Noah’s Flood, Creation 40(2):48–51, 2018. 텍스트로돌아 가기.
  3. Ritter, D.F., Pediments; in: Process Geomorphology, Wm. C. Brown, Dubuque, IA, pp. 290–299, 1978. 텍스트로돌아 가기.
  4. Twidale, C.R. and Bourne, J.A., Origin and age of bornhardts, southwest Western Australia, Australian J. Earth Sciences 45:903–914, 1998. 텍스트로돌아 가기.
  5. Rich, J.L., Origin and evolution of rock fans and pediments, GSA Bulletin 46:999–1,024, 1935. 텍스트로돌아 가기.
  6. Howard, A.D., Pediment passes and the pediment problem (Part I), J. Geomorphology 5(1):3–31, 1942. 텍스트로돌아 가기.
  7. A term generally reserved for smaller channels cut by a watercourse. 텍스트로돌아 가기.
  8. Dohrenwend, J.C., Pediments in arid environments; in: Abrahams, A.D. and Parsons A.J. (Eds.), Geomorphology of Desert Environments, Chapman & Hall, London, U.K., pp. 324, 329, 1994. 텍스트로돌아 가기.
  9. Technically, rocks whose diameter is > 256 mm (10 in). See Wentworth, C.K., A scale of grade and class terms for clastic sediments, J. of Geology 30(5):377–392, 1922. 텍스트로돌아 가기.
  10. Crickmay, C.H., The hypothesis of unequal activity; in: Melhorn, W.N. and Flemel, R.C. (Eds.), Theories of Landform Development, George Allen and Unwin, London, U.K., p. 107, 1975. 텍스트로돌아 가기.
  11. The angle at which they are inclined to the horizontal. 텍스트로돌아 가기.
  12. Higgins, C.G., Theories of landscape development: a perspective; in: Melhorn, W.N. and Flemal R.C. (Eds.), Theories of Landform Development, George Allen and Unwin, London, U.K., pp. 1–28, 1975. 텍스트로돌아 가기.
  13. Twidale, C.R., On the origin of pediments in different structural settings, American J. Science 278:1,142–1,176, 1978. 텍스트로돌아 가기.
  14. Dohrenwend, J.C., Wells, S.J., McFadden, L.D., and Turrin, B.D.; In, Gardiner, V. (Ed.), International Geomorphology 1986, Proceedings of the 1st International Conference on Geomorphology, Part II, pp. 1,047–1,062, 1987. 텍스트로돌아 가기.
  15. Garner, H.F., The Origin of Landscapes: A Synthesis of Geomorphology, Oxford University Press, New York, NY, pp. 343–344, 1974. 텍스트로돌아 가기.
  16. Crickmay, C.H., The Work of the River: A Critical Study of the Central Aspects of Geomorphology, American Elsevier Publishing Co., New York, NY., p. 127, 1974. 텍스트로돌아 가기.
  17. Dohrenwend, ref. 8, p. 321. 텍스트로돌아 가기.