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A Stochastic Modelling of 
Mutations in Bacteria

CARL A. CRIBBS A N D  CARL A. B A R R O W S

Evolutionary theory depends upon certain 
processes such as an increase in complexity made 
possible (in part, at least) by changes in DNA, the 
genetic material. These mutations are considered by 
many to be mostly harmful, but still the most 
important source of change in evolution.12 Recently, 
the importance of mutations in evolutionary processes 
has been questioned by Gould and others,3,4 although 
few evolutionary theorists would claim that mutations 
don’t play some role.

To help define the issue of whether mutations could 
serve as a source of new genetic traits, we decided 
to apply a mathematical model. The model assumes 
certain mutation frequencies in bacteria and follows 
the effect of cumulative mutations on subsequent 
generations. Ayala estimated frequency rates in 
animals to be one in 1,000,000 per gene per 
generation.5 Others, such as Schute, have estimated 
a rate of one in 109 cells.6

Winchester7 concluded from various studies 
including Mueller’s experiments with induced 
mutations in fruit flies8 that well over 99% of all 
mutations are harmful to some degree and reduce the 
fitness of the organism. According to Dobzhansky, 
most mutations are actually lethal.9 Mutations that 
provide antibiotic resistance in bacteria actually are 
a genetic burden and disadvantage to those bacteria 
which possess the traits when selection pressures are 
absent.10 We based our model upon a bacterial 
population in which one cell in every billion cells 
mutated. The probability of a mutation being harmful 
in some way was 99.99%. The remaining .01% was 
divided into neutral, reversion, and beneficial 
mutations. Here we were assuming that beneficial 
mutations could occur in our bacterial population. As 
our model demonstrates, within valid parameters, 
mutations result in an inevitable lethal genetic burden 
on the progeny of the bacterial cell in which the 
mutations occur. Offspring always reach the 
absorbing state of death, and the population as a 
whole suffers from “dirtying of the gene pool.”

T H E O R Y  A N D  S T A T E M E N T  O F  P RO BLEM

Stochastic models are used when there are several 
events that are possible. An example would be the 
events in machining a component (using work stations 
A, B, and C to represent events). If the component is 

machined at one of the work stations, then machined 
at another station or reworked, a component might 
follow a pattern of steps such as: A to B to C; A to C 
to B to B to B; C to A to B to A to C; A to A to A to B 
to . . . etc., where A to A is staying for reworking. One 
may assume that the component does not have to 
follow a prescribed sequence of work stations, e.g., 
A to B to C. Based on past history of the machining 
patterns of the component, probabilities of going from 
one station to another (or staying) can be determined. 
These probabilities are represented by 

pAB = probability of going from station A to B
PAA = probability of going from station A to A
PCB = probability of going from station C to B

The diagram of what can happen (with probabilities 
indicated) is shown in Figure 1.

Note: PAB does not necessarily equal PBA. Also:
PAA + PAB + PAC =  1
PBA + PBB + PBC =  1
PCA + PCB + PCC =  1

Once the job is done, the component enters a station 
it does not return from. If station C is changed to the 
event of being stored in a warehouse, the diagram 
becomes as shown in Figure 2.



Once event C happens, the job is done. This is called 
an absorbing state. A matrix is formed from this data 
called a probability matrix (the rows sum to 1.0). 
Using the second diagram, the matrix representation 
is

With this matrix, calculations can be done to 
determine the probability of being in one of the 
stations in k number of steps, given the current 
station. For example, the probability can be 
determined for going from station B to station C 
(finished) in four steps (k = 4) following any legal 
path. Legal paths include:

B to B to A to C 
B to A to B to C 
B to C (once entered, finished) 
etc. 

but exclude:
B to C to A (must stop once C is entered) 

or A to B to C (must start with station B)
This probability would be determined through taking 
the fourth power of P:

P  x  P  x  P  x  P = P4
so

where PAA[4] is not PBC to the fourth power, but PBC[4] is the 
probability of going from station (or state) B to station 
C in four steps. A more technical approach is now 
presented.

A Markov chain is defined formally as “for each k, 
the conditional probability that the system is in a 
given state after k steps, knowing the states of the 
system at all preceding steps, is the same as the 
conditional probability knowing only the state at the 
immediately preceding step.”11 That is, the only past 
information needed for the current step is what 
happened in the previous step. So, a probability 
matrix is:

where the rows sum to one, and
P00 is the probability of going from state 0 to state 

0 in one step
P10 is the probability of going from state 1 to state 

0 in one step

Pij is the probability of going from state i (the 
previous state) to state j, 0 ≤ Pij ≤  1; i,j = 0, 1, . . ., 
n, where a state can be an event, condition, change, 
etc. Therefore, the probability of going from event i 
to event j in n steps is Pij[n]. Pij[n] is a probability as 
described above, but Pij[n] is the result of multiplying 
matrix P times itself n times (Pn).

Using the probability matrix P, the following matrix 
is established for traits (capabilities) for a bacteria:

where state 0 is a neutral mutation
state 1 is a beneficial mutation 
state 2 is a reverting mutation 
state 3 is a lethal mutation or harmful 
mutation

The probability of a neutral mutation must be 
greater than or equal to the probability of a reversion 
since (in the long term) the number of reversions 
cannot exceed the number of neutral mutations.

Assumptions for a beneficial mutation:
1. increase the probability of another beneficial 

mutation
2. increase the probability of a reversion 

mutation
3. decrease the probability of a lethal mutation 

A lethal or harmful mutation ends all (an absorbing 
state). Mutation probabilities in the top row are based 
on mutation data given earlier. The .01% is divided 
up as follows:

.009 neutral

.00000999 beneficial (never really observed)

.00000001 reverting (conservative, favoring the
evolutionist)

The probability matrices for 2, 3, 5, 10, 15, and 20 
stages of mutations are shown in Figure 3. The 
computations were done on a TRS 80 Model I 
computer with 16 significant digits and accuracy to 
10-38.

ANALYSIS
Using probabilities designed to give values 

optimistic to the evolutionary viewpoint, the 
stochastic (series of random events) models show that 
“with time” (an important element for evolutionary 
theory) the tendency is toward a loss of capabilities. 
The probability of a harmful mutation increases with 
each mutation. Even though the matrix represents one



M ^ 1
9 .00000000000000D– 05 
8 .00000000000000D-05 
7.99000000000000D-05 
0.00000000000000D+00

9 .99000000000000D–06

1.00000000000000D –04 
2.00000000000000D–05 
0.00000000000000D+00

1.00000000000000D-08
2.00000000000000D-05

1.00000000000000D-07 
0.00000000000000D+00

9 .99900000000000D-01
9.99800000000000D-01
9.99900000000000D-01
1.00000000000000D+00

M ^ 2
8.89999900000000D-09 
1 .67980000000000D-08 
8.79899000000000D-09 

0.00000000000000D+00

1.89830000000000D-09 
1.11992000000000D-08 
2.80020100000090D-09 

0.00000000000000D+00

2 .00701000000000D-10 
2.0028000000000D -09 
4 .00809 000000000D-10 

0.00000000000000D+00

9.99999989001000D-01

9.99999970000000D-01
9 .99999988000000D-01
1.00000000000000D+00

M ^ 3
9 .68899919900000D-13
2.56777972000000D-12
1.04794981910000D-12

0.00000000000000D+00

2.8275501001000D -13 
1.32778802000000D-12 
3.75938190100000D-13 
0.00000000000000D+00

3 .80750700900000D-14 
2.24352260000000D-13 
5.61320908000000D-14 
0.00000000000000D+00

9 .99999999998710D- 01 
9.99999999995880D-01 
9 .99999999998520D- 01 
1.00000000000000D+00

M ^ 5

1.37079491373293D-20 
4 .71314933923977D-20 
1.61356677649683D-20 

0.00000000000000D+00

5.11251047539125D-21 
2.03728112588643D-20 
6.35671125695570D-21 

0.00000000000000D+00

7.76021747639581D-22

3 .26457220901806D-21
9.85751830956926D-22
0.00000000000000D+00

1.00000000000000D+00 
1.00000000000000D+00 
1.00000000000000D+00 
1.00000000000000D+00

M  ̂10 

0 .00000000000000D+00 
0.00000000000000D+00 

0.00000000000000D+00 
0.00000000000000D+00

0.00000000000000D+00 
0.00000000000000D+00 

0.00000000000000D+00 
0.00000000000000D+00

0.00000000000000D+00 
0.00000000000000D+00 

0.00000000000000D+00 
0.00000000000000D+00

1.00000000000000D+00 

1.00000000000000D+00 

1.00000000000000D+00 
1 .00000000000000D+00

M ^15
0.00000000800000D+00 

0.00000000000000D+00 
0.00000000000000D+00 

0.00000000000000D+00

0.00000000000000D+00 
0.00000000000000D+00 
0.00000000000000D+00 

0 .00000000000000D+00

0.00000000000000D+00 
0.00000000000000D+00 
0.00000000000000D+00 

0.00000000000000D+00

1.00000000000000D+00 
1 .00000000000000D+00 
1.00000000000000D+00 
1,00000000000000D+00

M  ̂20 

0.00000000000000D+00 
0.00000000000000D+00 

0.00000000000000D+00 
0.00000000000000D+00

0.00000000000000D+00 
0.00000000000000D+00 
0.00000000000000D+00 
0.00000000000000D+00

0.00000000000000D+00 
0.00000000000000D+00 
0.00000000000000D+00
0.00000000000000D+00

1.00000000000000D+00
1.00000000000000D+00
1.00000000000000D+00
1.00000000000000D+00

Fig. 3 Computer print-out of the probability matrices for 1, 2, 3, 5, 10, 15 and 20 stages of mutations.



system of n mutations, the best a descendant of this 
bacterium can attain is a probability matrix of P. 
Basically, it would lie between P and Pn, unless a 
mutation occurs at birth (resulting in a matrix 
between P and Pn+1, which is worse). This tendency 
to go toward a harmful mutation with each new 
mutation (step) is due to the fact that a harmful 
mutation is an absorbing state (a state once entered 
that cannot be left).

Theorem. In an absorbing Markov chain, the 
probability that the process will be absorbed is 1.12

Therefore, the presence of the ability to have a 
lethal or harmful mutation (no matter how small the 
probability), causes the probability of the next lethal 
or harmful mutation to increase.

CONCLUSIONS
This is only a statistical model, but it puts a ceiling 

on mutations. What exists now is optimal, the ability 
to have mutations causes a loss of capabilities (a 
downward trend toward a higher probability to have 
a harmful or lethal mutation). The organism would be 
better off not to have the ability to mutate (and 
definite beneficial mutations have not been observed) 
since the probability of a harmful mutation is so high. 
Even if we assume a lower probability that a certain 
mutation would be harmful to a bacterial cell, we still 
can show with this model that a critical genetic 
burden results. This stochastic model shows a real 
tendency toward decline rather than new traits that

would improve the organism’s chances of survival. So 
we conclude that mutations always result in a net 
disadvantage for the organism even when a new trait 
is introduced.
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