A Review of Speed of Light Measurements Since 1676

PROFESSOR S. J. PROKHOVNIK AND DR W. T MORRIS

ABSTRACT

Published measurements of the speed of light in vacuo, and associated measurements of this speed, show no trend of a progressive decrease or increase of this speed.

Measurements of the speed of light settled down to its present accepted value of 299,792 kilometres per second around about 1955. Before then, errors in the estimation of this value, and the use of less sensitive instruments than we have now, resulted in discrepancies in this estimate with values equally above and below the average value obtained until then — this average value being remarkably close to the present verified and re-verified accepted value.

The story is comprehensively presented in a number of publications,^{1,2,3} which also identify the various reasons for the significant discrepancies in the measurements up to 1955.

Froome and Essen⁴ present the information in a number of tables which may be combined to give the information shown in Tables 1 and 2. It is seen even without any sophisticated statistical analysis, that the data shows no upward or downward trend in the measurements of the speed of light since 1676, noting of course that Roemer's estimation was virtually a seminal, qualitative demonstration that light had a finite speed with respect to a space-interval in the solar system.

It is seen, from the data in Table 1, that 17 measurements are above the currently-accepted measurement of 299,792 kilometres per second, and 19 (including Roemer's) below it, with four measurements equal to it. The situation since 1954 shows only small variations (again without a trend) in the seventh significant figure of the estimations.

If we further consider Table 2 which presents an indirect set of measurements of c_{o} we find that eight of these are greater than 299,792 (km/sec) and nine below it, with

Date	Author	Method	Result (km/sec)	Limits of error
1676	Poomor	lupitor's sotallitas	214 000	NIA
1726	Bradlov	Abarration of store	214,000	
1720		Aberration of stars	301,000	NA NA
1849	Fizeau	I oothed wheel	315,000	NA
1862	Foucault	Deflection of light	298,000	±500
		by rotating mirror		
1872	Cornu	Toothed wheel	298,500	±900
1874	Cornu	Deflection of light	300,400	±800
1878	Michelson	Deflection of light	300,140	±700
1879	Michelson	Deflection of light	299,910	± 50
1882	Newcomb	Deflection of light	299,810	± 30
1882	Michelson	Deflection of light	299,853	± 60
1891	Blondlot	Lecher wires	297,600	NA
1895	Trowbridge and Duane	Lecher wires	300,300	NA

1897	Saunders	Lecher wires	299,700	NA
1899	Maclean	Free space	299,100	NA
1908	Rose and Dorsey	Toothed wheel	299,901	± 84
1923	Mercier	Lecher wires	299,795	± 30
1924	Michelson	Rotating mirror	299,802	± 30
1926	Michelson	Rotating mirror	299,796	± 4
1928	Karolus and Mittelstaedt	Kerr Cell	299,778	± 20
1935	Michelson, Pease and Pearson	Rotating mirror	299,774	± 11
1937	Anderson	Kerr Cell	299,771	± 12
1940	Hüttel	Kerr Cell	299,768	± 10
1941	Anderson	Kerr Cell	299,776	± 14
1947	Essen and Gordon-Smith	Cavity resonator	299,792	± 3
1947	Smith, Franklin and Whiting	Radar	299,695	± 50
1947	Jones	Radar	299,687*	± 25
1949	Aslakson	Radar	299,792.4	± 2.4
1949	Bergstrand	Geodimeter	299,796	± 2
1949	Jones and Cornford	Radar	299,701*	± 25
1950	Essen	Cavity resonator	299,792.5	± 1
1950	Bergstrand	Geodimeter	299,793.1	± 0.26
1950	McKinley	Quartz modulator	299,780	± 70
1950	Houstoun	Quartz modulator	299,775	± 9
1950	Hansen and Bol	Cavity resonator	299,789.3	± 0.8
1951	Bergstrand	Geodimeter	299,793.1	± 0.4
1951	Aslakson	Radar	299,794.2	± 1.4
1951	Froome	Radio interferometer	299,792.6	± 0.7
1952	Rank, Ruth and Vanden Sluis	Spectral lines	299,776	± 6
1954	Froome	Radio interferometer	299,793.0	± 0.3
		Corrected 1958	299,792.75	± 0.3
1954	Rank, Shearer and Wiggins	Spectral lines	299,789.8	± 3
1954	Florman	Radio interferometer	299,795.1	± 3.1
1955	Schöldström	Geodimeter	299,792.4	± 0.4
1955	Plyler, Blaine and Cannon	Spectral lines	299,792	± 6
1956	Wadley	Tellurometer	299,792.9	± 2.0
			299,792.7	± 2.0
1956	Rank, Bennett and Bennett	Spectral lines	299,791.9	± 2
1956	Edge	Geodimeter	299,792.4	± 0.11
			299,792.2	± 0.13
1957	Wadley	Tellurometer	299,792.6	± 1.2
1958	Froome	Radio interferometer	299,792.5	± 0.1
1966	Karolus	Modulated light beam	299,792.1	± 0.2
		Corrected 1967	299,792.44	± 0.2
1967	Simkin, Lukin, Sikora		299,792.56	± 0.11
	and Strelenskii			
			* value in air	

Table 1. Speed of light and of electromagnetic radiation in vacuo, from measurements tabulated by Froome and Essen.

no trend at all evident.

REFERENCES

- In all, this objective data gives absolutely no support to Norman and Setterfield's claim⁵ that the speed of light has been observably decreasing over the last 300 years.
- 1. Froome, K. D. and Essen, L., 1969. The Velocity of Light and Radio Waves, Academic Press.

Date	Author	Value (km/sec) <i>in vacuo</i>	
1857	Weber and Kohlrausch	310.800	
1868	Maxwell	284.300	
1869	Thomson and King	280,900	
1874	McKichan	289,700	
1879	Ayrton and Perry	296,100	
1880	Shida	295,600	
1883	Thomson, J. J.	296,400	
1884	Klemencic	302,000	
1888	Himstedt	301,000	
1889	Thomson, W.	300,500	
1889	Rosa	300,090	
1890	Thomson, J. J. and Searle	299,690	
1891	Pellat	301,010	
1892	Abraham	299,220	
1897	Hurmuzescu	300,190	
1898	Perot and Fabry	299,870	
1899	Lodge and Glazebrook	301,000	
1907	Rosa and Dorsey	299,788	

Table 2. Estimation of c_0 via the ratio of electromagnetic to electrostatic units.

- 2. Sanders, J. H., 1965. The Velocity of Light, Pergamon Press.
- Beardon, J. A. and Thomson, J. S., 1959. American Journal of Physics, 27:569.
- 4. Froome and Essen, Ref. 1.
- 5. Norman, T. and Setterfield, B., 1987. The Atomic Constants, Light and Time, Stanford Research Institute International.

Professor Simon Prokhovnik obtained a B.A., B.Sc. and M.Sc. from The University of Melbourne and worked for many years as a biochemist/bacteriologist. He then worked as a mathematically-oriented industrial chemist, before joining the staff of the School of Mathematics at The University of New South Wales in Sydney in 1955. Though retiring in 1981, he continues to be a Professor of the University in an honorary capacity.

Dr Trevor Morris obtained his B.Sc. and Ph.D. from the University of Wales and for many years worked as a Principal Scientific Officer in charge of the Division of Radiation Science and Acoustics of the (U.K.) National Physical Laboratory. He now works in a senior position for the Department of Trade and Industry in London.