Click here to view CMI's position on climate change.
This article is from
Journal of Creation 23(1):115–118, April 2009

Browse our latest digital issue Subscribe

Many arches and natural bridges likely from the Flood

by Michael J. Oard

Freestanding rock arches and large natural bridges are observed to collapse today, such as Wall Arch in Arches National Park in early August 2008. The formation of large arches and natural bridges from slow weathering and erosion would take tens of thousand of years. However, the uniformitarian hypotheses for their origin are not observed. A rapid process of erosion in the past consistent with the Retreating Stage of the Flood is more likely.

National Park Service photo Wall Arch after the collapse.
Figure 1. Location of Wall Arch after collapse.

One of the most photographed free standing arches in Arches National Park, Wall Arch, in southeast Utah, USA, collapsed sometime late Monday or early Tuesday of August 4th and 5th, 2008 (figure 1). No one reported seeing it collapse. 

The arch is located along the popular Devils Garden Trail and was more than 10 m (33 ft) tall and spanned 22 m (71 ft) across before collapse (figure 2). It was the 12th largest arch of the estimated 2,000 arches in Arches National Park. 

The collapse of such arches provides evidence that long free standing arches and many tall natural bridges likely formed rapidly during the Flood.

Rock arches

Arches come in all sizes. They range from Landscape Arch in Arches National Park, the longest in the world, with a span of 88 m (290 ft) to small holes. The large ones are high enough to contain the Capitol building in Washington D.C. The small holes are called windows in Bryce Canyon National Park (figure 3). Such windows could form rapidly by weathering of the soft strata.

National Park Service photo Location of Wall Arch before collapse.
Figure 2. Wall Arch before the collapse.

Most free standing rock arches are believed to have formed without stream erosion. Although an arch is similar to a natural bridge, it differs from a natural bridge because it does not span a valley formed by erosion. Rock arches can be on ridges or the sides of a ridge.

Rock arches are believed to form slowly over long periods of time by physical and chemical weathering. 

Four steps are proposed:
(1) uplift that causes deep vertical, parallel fractures to form; 
(2) weathering and erosion that enlarge fractures resulting in narrow walls or ‘fins’; 
(3) continuing erosion with some fins breached from below; and 
(4) continued weathering that enlarges the holes and eventually causes the arch to collapse.1

It is assumed that it takes a long time to form an arch. Geologists estimate that it would have taken 70,000 years of water, frost and wind operating in a dry climate to form the isolated Delicate Arch in Arches National Park (figure 4).1 Nearly all the arches in southeast Utah formed in only two specific sandstone formations in the area.2 

Natural bridges

 Windows in a ‘fin’, Bryce Canyon National Park from near Mossy Cave Trail.

Figure 3. Windows in a ‘fin’, Bryce Canyon National Park from near Mossy Cave Trail.
Delicate Arch, Arches National Park. Uniformitarian geologists estimate that this arch took 70,000 years to form but rapid erosion by retreating floodwaters during Noah’s Flood would have carved the arch quickly.

Figure 4. Delicate Arch, Arches National Park. Uniformitarian geologists estimate that this arch took 70,000 years to form but rapid erosion by retreating floodwaters during Noah’s Flood would have carved the arch quickly.

Sipapu Natural Bridge, Natural Bridge National Monument, southeast Utah, USA.
Figure 5. Sipapu Natural Bridge, Natural Bridge National Monument, southeast Utah, USA.

Natural bridges were formed by running water and come in many sizes. Some of the largest and most impressive natural bridges in the world are located in southeast Utah. Natural Bridges National Monument boasts three of the ten largest natural bridges in the world and they are associated with White and Armstrong Canyons. 

Their names have changed with the political wind. Sipapu Natural Bridge is 67 m (220 ft) high and 82 m (268 ft) wide (figure 5). It is second in size only to Rainbow Bridge, located on Lake Powell in northern Arizona.3 

One of the most famous is Natural Bridge, Virginia, about two miles east of Interstate 81 (figure 6). The opening under this natural bridge is about 60 m (200 ft) above Cedar Creek that flows underneath.4 U.S. Highway 11 crosses the top of this natural bridge.

Cleland5 classified many types of natural bridges on their presumed origin mechanism. One of the most common proposed mechanisms is the undercutting of the neck of a meander bend. Those in Natural Bridges National Monument likely formed this way. 

Another common mechanism is the undercutting of a weak layer beneath a resistant layer in a small eroding valley.6 Sometimes the resistant ‘layer’ can be a petrified log. A third common type of natural bridge is formed by the solution and mechanical erosion of limestone. A natural bridge on the Boulder River, south of Big Timber, Montana, was formed by limestone dissolution.7 

Assumed uniformitarian origin not observed

The origin of free standing arches (as opposed to windows) and the larger natural bridges is mysterious. The explanations in the literature assume slow processes of erosion over tens of thousands of years, according to the principle of uniformitarianism. 

The problem with that much time is that the bridge or arch should have weathered and collapsed long before the material around it was able to erode and leave behind an arch or natural bridge. Crickmay noted that natural bridges seem to defy uniformitarianism:

‘What is remarkable about its [natural bridge] history is that, in all the time required for the stream currents to corrade downward and laterally through a vertical depth of from 10 to 12 or 60 m in resistant rock, the progress made by ‘denudation’ toward destroying the fragile-looking bridge appears to have been virtually nil—a discrepancy in rates of action that may exceed 100,000 to 1 [emphasis added].’8 

Since natural bridges have streams or stream channels below them and arches do not, Crickmay’s observation applies even more so to rock arches. Such a discrepancy in erosion makes little sense and implies rapid formation of most free standing rock arches and large natural bridges.

Some geologists suggest that the erosion of a less resistant rock underneath a more resistant rock causes the arches, but such a mechanism can account for few arches, at best.9 Other hypothesized mechanisms are no more likely. Cruikshank and Aydin10 summarized:

‘There is no need to invoke reasons such as weak cement, unloading, or exfoliation to explain the presence of arches, especially when these processes act on similar rocks in nearby regions without producing the same abundance of arches.’

Cruikshank and Aydin9 hypothesized that the majority of arches are caused by ‘local enhancement of erosion by fracture concentration’, which they have identified in many arches. Why was such an ‘obvious mechanism’ somehow missed by previous investigators? However, no one has seen an arch form by this mechanism.

Thus, long free-standing arches do not seem to be forming today in Arches National Park; in other words stage three and early four are not observed. And, like Wall Arch, we do observe late stage 4, their collapse. A portion of Landscape Arch in Arches National Park collapsed in the 1940s. 

Since 1991, three large slabs of sandstone measuring 9, 14 and 21 m long have been witnessed collapsing from the thinnest section of Landscape Arch. The longest arch in the world will likely be gone soon! The natural bridge across the Boulder River in Montana collapsed in 1989. In 1991, an arch off Point Campbell, western Victoria, Australia, collapsed.11 

Since we observe the destruction of large freestanding arches and natural bridges, but not their formation, the origin of these features occurred in the past by processes not observed today, like so many aspects of geomorphology.12 

In other words, large freestanding arches and natural bridges are relic and likely formed by some mechanism in the past that caused quick erosion to specific locations. The Genesis Flood provides a likely mechanism for many of them.

A late-Flood mechanism

Natural Bridge, Virginia, USA.
Figure 6. Natural Bridge, Virginia, USA.

In the Flood paradigm, most of the small natural bridges and arches could have formed after the Flood by erosion. Since some of the small bridges are located in glaciated areas,5,7 and since these natural bridges could not survive glaciation, they must have formed after the Ice Age. Furthermore, the suggested mechanisms for their formation are reasonable expectations of post-Flood weathering and erosion.

However, the large natural bridges and practically all the free standing arches require too much time to form in this manner during the post-Flood period. Erosion by normal weathering processes during the formation of large natural bridges and arches should have destroyed these features long before eroding down to their present levels. 

Large natural bridges and arches imply more rapid erosion—the type of erosion that would have occurred during the Retreating Stage of the Flood.12,13 Arches would have formed during either the Sheet-flow or Channelized-flow Phase of the Retreating Stage, while natural bridges probably formed during the Channelized Phase.

Williams4 attributed Natural Bridge, Virginia, to erosion during Flood runoff. Since the natural bridge is located in karst country with abundant caves, he concluded that this unusual feature represents a remnant of a collapsed cave with the debris from the collapse completely washed out of the area. 

Natural Tunnel in extreme southwest Virginia also provides evidence for Flood excavation in karst land, but in this case a larger section of the tunnel roof remained in place.14 

The timing of arch and natural-bridge formation in the specialized conditions of the late-Flood period is especially compelling when we remember that large natural bridges and arches are not forming today. Arches are simply assumed to form by more rapid weathering at the base of a fin.15 However, such differential erosion and arch formation is speculation:

‘Arch formation cannot be due solely to weathering and erosion, however, because these processes are not restricted to the sites of arches in rock fins. 

There must be some factor that locally enhances the effects of erosion within a rather small part of a rock fin to produce an arch. How erosion is localized within a rock fin to form an arch is enigmatic.’16 

Rivers and streams can be eliminated as potential agents of local arch formation, by definition of a rock arch. The arches in Arches National Park are preserved on an anticline—a ridge pushed up by a rising salt dome.17 

Although the specialized conditions that might have formed arches and natural bridges were present in the late-Flood period, the process has not been observed and we must rely on inference. Rapid downcutting by floodwater during late Flood erosion, either over a high area or during the formation of an incised valley, could have undercut less resistant rock, breaking through underneath a more resistant layer. Or, possibly mechanical erosion from the floodwater was concentrated lower down on the rock surface, eventually cutting a hole. 

The bridges in Natural Bridges National Monument could have formed at the very end of the Flood when the last vestiges of the Flood were extremely channelized. The formation of Natural Bridge and Natural Tunnel, Virginia, by the rapid erosion of caves in limestone18,19,20,21 followed by Flood erosion of the roof seems like a viable hypothesis. 

It could be that some of the uniformitarian suggestions, such as a different lithology, weaker cementing of the sand, and local fracture concentration, in combination with catastrophic flow during Flood runoff, caused the arches of Arches National Park and elsewhere.

References and notes

  1. Harris, A.G., Tuttle, E. and Tuttle, S.D., Geology of National Parks, 5th ed., Kendall/Hunt Publishing Co., Dubuque, IA, p. 83, 1990. Return to text.
  2. Blair Jr, R.W., Development of natural sandstone arches in south-eastern Utah; in: Gardiner, V. (Ed.), International Geomorphology 1986, Proceedings of the 1st International Conference on Geomorphology, Part II, pp. 597–604, 1986; p. 598. Return to text.
  3. Huntoon, J.E. et al., Geology of Natural Bridges National Monument, Utah; in: Sprinkel, D.A., Chidsey Jr, T.C. and Anderson, P.B. (Eds.), Geology of Utah’s Parks and Monuments, Utah Geological Association Publication 28, 2nd ed., Salt Lake City, UT, pp. 232–249, 2003. Return to text.
  4. Williams, E.L., Natural Bridge, Virginia: origins speculations, CRSQ 39(2):101–105, 2002. Return to text.
  5. Cleland, H.F., North American natural bridges, with a discussion on their origin, Geol. Soc. Am. Bull. 21(1):313–338, 1910. Return to text.
  6. Barnett, V.H., Some small natural bridges in eastern Wyoming, J. Geology 20:438–441, 1912. Return to text.
  7. Wentworth, C.K., Natural bridges and glaciation, Am J Sci 26(156):577–584, 1912. Return to text.
  8. Crickmay, C.H., Discovering a meaning in scenery, Geol Mag 109(2):171–177, 1972; p. 172. Return to text.
  9. Cruikshank, K.M. and Aydin, A., Role of fracture localization in arch formation, Arches National Park, Utah, Geol. Soc. Am. Bull. 106(7):879–891, 1994. Return to text.
  10. Cruikshank and Aydin, ref. 9, p. 891. Return to text.
  11. Twidale, C.R., Some recently developed landforms: climatic implications, Geomorphology 19(3–4):349–365, 1997. Return to text.
  12. Oard, M.J., Flood by Design: Receding Water Shapes the Earth’s Surface, Master Books, Green Forest, AR, 2008. Return to text.
  13. Walker, T., 1994, A biblical geological model; in: Walsh, R.E. (Ed.), Proceedings of the Third International Conference on Creationism, Creation Science Fellowship, Pittsburgh, PA, pp. 581–592, 1994. Return to text.
  14. Williams, E.L., Natural Tunnel, Virginia: origin speculations, CRSQ 39(4):220–224, 2003. Return to text.
  15. Harris et al., ref. 1, pp. 81–83. Return to text.
  16. Cruikshank and Aydin, ref. 9, p. 879. Return to text.
  17. Doelling, H.H., Geology of Arches National Park, Utah; in: Sprinkel, D.A., Chidsey Jr, T.C. and Anderson, P.B. (Eds.), Geology of Utah’s Parks and Monuments, Utah Geological Association Publication 28, 2nd ed., Salt Lake City, UT, pp. 11–36, 2003. Return to text.
  18. Oard, M.J.,  Rapid cave formation by sulfuric acid dissolution, J. Creation (CENTJ) 12(3):279–280, 1998. Return to text.
  19. Silvestru, E.,  The riddle of paleokarst solved, J. Creation (TJ) 15(3):105–114, 2001; p. 109. Return to text.
  20. Silvestru, E., A hydrothermal model of rapid post-Flood karsting; in: Ivey Jr, R.L. (Ed.), Proceedings of the Fifth International Conference on Creationism, Creation Science Fellowship, Pittsburgh, PA, pp. 233–241, 2003. Return to text.
  21. Silvestru, E., The Wonders of Creation: The Cave Book, Master Books, Green Forest, AR, 2008. Return to text.

Helpful Resources

The Geologic Column
by John K Reed, Michael J Oard
US $15.00
Soft Cover
Flood By Design
by Michael J Oard
US $15.00
Soft Cover

Readers’ comments

John H.
There were many cataclysms subsequent to the Flood which could have created these bridges - particularly the catastrophe in 1464 BC that terminated the Paleogene Period, caused the "Great Dying," and precipitated the Pleistocene Period, which lasted until after 665 BC.
Tas Walker
I don't think a post-Flood scenario works, especially for the arches that sit at a high elevation.
Egil W.
If the question of origins of arches rests on the erosion-speed-rate, and that in turn would depend on the solidity or lack such of the eroded materials plus the force of possible erosion-mechanisms (water for example), are there examples in nature or experiments on a lower scale, that could be used to model the origin of such arches?

Can we anywhere see or produce something similar on a much smaller scale?

In a documentary it was described release of dam-waters that had the effect of tearing up solid cement-tunnels made for releasing waters. It happened because of the unforseen stress that came about as the force of the channeled water, which also contained air-bubbles, became much greater than the tunnels usually could stand.

It is interesting to note such examples where the variables of forces in processes, creates much different effects of build-up or tearing-down of structures in nature or buildings.

I often wonder just how wrong uniformitarianism has gotten things, because of their general neglectance of taking catastrophic processes into consideration.

And I also wonder how many fields of geology, ancient climate & weather-conditions and natural chronology, that has been misunderstood or completely misrepresented because of this unwillingness to consider catastrophic processes.

If villages and fields flooded with shoulder-high sediments had to be explained by usual rainfall and usual dust-accumulation, the conclusion would not be or could not be 'it happened within days or weeks', but would have to be 'decades or hundreds of years', and the conclusion would be...wrong, not factual, errant, and not representing reality.

Asking someone who actually experienced and saw that flooding, would have given a factual report of the actual timescale.

Linda G.
Thank you for standing firm on the truth of God's word. It greatly encourages me and helps me teach my children to do the same. One question though. You mentioned phases and stages of Noah's flood ("Arches would have formed during either the Sheet-flow or Channelized-flow Phase of the Retreating Stage, while natural bridges probably formed during the Channelized Phase.") Is there an article or chart somewhere articulating all the phases and stages? I haven't come across it yet in the hundreds of articles I've read on your website over the last few years. I'd like to be able to have something like that as a quick-reference.

Linda Guetschow
Tas Walker
This article on the basement rocks of Brisbane mentions it. Also this article on the geologic column being a general order. The DVD "Biblical geology" available on this site also explains it. Also if you Google "Biblical geological model" you should find more.
Chuck R.
I wonder if maybe we (creationists) are underestimating the speed of erosion since the flood, which may have created some of these landmarks. One example is Chimney Rock in Neb. Looking at photos of it from years ago and comparing it to what is there today, you can visibly see how quickly it is eroding. Judging by the amount of debris at the base, it appears to have been considerably larger than what we now see.
Vern R.
I have lived and worked in the Four corners area as well as eastern Utah and western Colorado for the last 60 years. I have been in the Arches many times and wondered how those natural structures could possibly have survived as long as they have.
In the multitude of canyons you see at nearly every bend what looks like the beginning of an arch that wasn't completed because the flow of fast moving water stopped. The majority of them are higher in elevation above the rivers and streams. There are what is called jug handle arches but I have seen where many of them have collapsed over the last two to three decades.
The area is also prone to flash flooding. Things change in a hurry and over just a few years and when revisiting the canyons it is very noticeable of the changes made by the flash floods. It doesn't take millions of years or even thousands of years for these things to happen. One just has to be observant of nature when basking in it.
This article may be six years old but there have already been a lot of changes in the landscape of the area it covers here in the western part of the U.S.
I love reading these CMI articles, especially when they cover my back yard.
Jonathan B.
It reminds me of the 12 Apostles, or what was the 12 Apostles that were on the south coast of Australia. They could have not been standing for long periods because there would be none left now. The sea would have claimed them all and made new ones if the world was ‘millions’ of years old.
Steve B.
This was a great article and very thorough. I am curious, being from the USA Southwest, if Creation scientists have studied the Valle Caldera which forms the entire Jemez mountains in central New Mexico. The power that was released when this volcano erupted has been attested to by secular scientists on many occasions.
Is the volcano a pre-flood or post-flood occurrence?
Tas Walker
I searched one of the creation databases (https://www.bryancore.org/celd/) and could not find any reference to creationist research on the Valles Caldera.

I checked the Wikipedia entry (https://en.wikipedia.org/wiki/Valles_Caldera) and there are also good images at (https://www.lpi.usra.edu/science/treiman/greatdesert/workshop/vallesgeol1/index.html). It is said to have erupted 1.47 million and 1.15 million years ago. To my mind that would be a post-Flood eruption, which is consistent with the fact that the shape of the caldera is still well preserved, with steep escarpments around the rim. If it was a Flood event we would expect there to have been more erosion.

While it is a huge volcano, it is still small compared with earlier volcanos that erupted during the Flood.
Peter E.
Since reading Creation Literature, I am now seeing evidence of large-scale flooding everywhere. In country NSW Australia, I have seen arches and bridges and large eroded canyons. Their resemblance to each other, is striking.

Recently, my children and I were in the Wedden Mountain Ranges outside Grenfell NSW. As you looked up at these mountains, it was obvious that they had been formed by deposited sediments from massive, raging floodwaters. The angle and length of these layers easily displayed the direction from which they had been deposited. I asked my young children if they could see these layers. They replied straight away and also answered quickly, confidently and correctly when asked if they could tell which direction the floodwaters had come from.

Notorious Australian Bushranger Ben Hall had a cave he used to hide-out in and we climbed the mountain to see it. Along the path we noticed boulders embedded with large stones and rocks-We were again confronted with proof of a large-scale flood. Inside the cave, I was astounded to discover similar formations. Also, I was amazed as the formations I was looking at had a striking resemblance to the Olgas, in the Northern Territory, albeit on a smaller scale.

It is interesting to discover that once you are exposed to the truth, you see the evidence of a massive flood everywhere. To interpret the evidence logically, only the historical account of a worldwide flood makes sense.

PS If you choose to publish this, go ahead and include my FULL Name and email address (peter_erbacher@hotmail.com). I’m not ashamed, and I’m not scared. I might even have people wanting to meet me who have similar stories. I also have pics of what I’m talking about—they speak for themselves. If you want to speak to me, my number is 0421 911 103. Keep up the good work. All of you are doing a great job-Soldier on!!!!!!!!!!
David G.
I believe there is a modern day example of the catastrophic erosion model you are discussing in this article.

There are multiple sea caves/arches along the Tasman Peninsula and South Bruny Island of Tasmania. These caves form from the extremely rough seas that pound the coast (some of the waves are the size of small buildings as they come up from the southern ocean). Some of the tourist information on the area assumes long ages are required to form arches; but the tour guides told me of caves that have enlarged or formed rapidly over the period of less than a decade.

Arches along with so much of what is all around us in the landscape speak of a global flood. Praise God that nature is His faithful servant, may more people learn to hear what it says of Him.

God bless you in your work, thank you for your scriptural faithfulness and scientific integrity.

Comments are automatically closed 14 days after publication.