Explore
Also Available in:

로렌타이드 빙상 가장자리 얇은 얼음의 오래된 연대 수수께끼

번역 Korea Association for Creation Research 번역: 한국어창조과학회 (creation.kr)

http://www.creation.or.kr/library/itemview.asp?no=3200

로렌타이드 빙상 가장자리 얇은 얼음의 오래된 연대 수수께끼

(Long-age puzzle of thin ice

at the edge of the Laurentide Ice Sheet)

에 의해 Michael J. Oard

북아메리카의 로렌타이드 빙상(Laurentide Ice Sheet)의 가장자리는 일반적으로 빙엽(lobes)들로 구성되어 있었는데, 이것은 남쪽으로의 빠른 이동 또는 해일(surges, 갑자기 빙하의 유속이 빨라지면서 밀려내리는 것)의 결과로서 생긴 것이다. 디모인 빙엽(Des Moines Lobe, DML)은 미국 대륙의 중부지역에까지 뻗어있는 몇 개의 빙엽들 중 가장 큰 것이었다. 측면과 종단면의 빙퇴석(moraines, 빙하에 의하여 옮겨진 암석·토사 따위의 더미)을 측정한 결과, DML의 크기는 폭 250 km 이며, 남부 미네소타와 북중부 아이오와를 덮을만한 10만km2 이상 되었다.

가장자리의 얼음 두께가 말발굽 경계면(horseshoe-bounding)의 빙퇴석만큼 높다고 가정하고 DML의 표면 형태를 재구성해보면, DML은 아마도 얇고, 약간 경사진 것임을 알 수 있다. [1, 2]. 그러한 크기 측정은 빙하학자들에게는 하나의 수수께끼를 만들어내었다. 얼음의 무게와 표면 경사부의 사인(sine) 값에 의거하여, 기저부의 전단스트레스(basal shear stress)는 매우 낮은 값으로 계산되었는데, 이 값은 전형적인 빙하의 스트레스 수치보다 10배나 작은 값이었다.[3] 따라서, 빙엽을 남쪽으로 움직이기 위한 추진력은 매우 낮았다. 반면에 연대측정 방법, 주로 탄소-14 연대측정 방법에 의하면, DML은 1년에 약 1700 m의 속도로 남쪽 방향으로 이동했음을 나타내고 있다. 그러나 이것은 빙하에게는 매우 빠른 속도이다. 따라서 추정하는 빙엽의 복원(reconstruction)이나 방사성 연대측정방법 둘 중에 하나, 또는 두 방법 모두에 무언가 오류가 있는 것이다.

현대빙하끝부분의빙상(Ice sheet)

방사성 연대측정법은 높은 평가를 받고 있기 때문에, 후어(Thomas Hooyer)와 이버슨(Neal Iverson)의 DML에 관한 최근 논문에[4] 의해서 도전받고 있는 것은 빙엽의 복원이다. 저자들은 과거의 빙엽을 복원하는 데에 오류가 발생할 수 있는 원인들을 기술하였다. 그들은 빙퇴석(moraine)은 빙핵(ice-cored)으로 되어질 수 있기 때문에, DML에 갇힌 빙퇴석의 가장자리에서의 얼음은 과거에 추정되었던 것보다 2-3배 더 높을런지도 모른다고 주장했다 [5]. 그러나, 남쪽으로 더 큰 표면경사를 가진, 3 배나 더 두꺼운 빙엽이라 할지라도, 빙엽을 남하시키기에는 동일과정설적 연대측정방법에 의해 가리켜지는 속도로는 아직도 충분하지 않다 [6].

게다가, 남극 대륙과 그린란드의 기존 빙상들로부터의 증거에 의하면, 가장자리의 얼음은 꽤 깨끗하다는 것이다. 가장자리에 얼음과 혼합되어 많은 암석 부스러기(debris)들을 가지고 있는 것은 주로 곡빙하(valley glaciers)들이다. 따라서, 빙핵을 가진 빙퇴석(ice-cored moraines)은 로렌타이드 빙상에서는 기대될 수 없다.

현대빙하끝에서의빙상(Ice sheet)

또한 저자들은 기저부에 놓여있는 표력토(basal till)에서 공극압력의 증가 효과로 잠재적으로 속도가 증가되리란 점도 고려했다. 위에서 누르는 무게의 대부분은 수압(water pressure)에 의한 것이므로, 얼음 아래의 공극 수압의 증가는 마찰(friction, shear resistance, 전단 저항)을 감소시킬 것이다 [8]. 시간이 지남에 따라, 이 과도한 공극내 압력은 분산될 것이고, 점토질의 표력토는 고결될(consolidate) 것이다 [9].

그러나 더 두꺼운 빙엽을 고려하여 아이오와주와 미네소타주의 표력토에 대한 고결(consolidation, 암석에서 떨어져 나온 쇄설물이나 액체 상태의 물질이 단단하고 굳은 암석으로 변해 가는 일) 정도를 측정한 결과, 그 아래 지층을 누르고 있는 빙하의 압력은 기대했던 값의 단지 대략 12%에서 30%에 지나지 않았다. 이러한 고결 실험은 DML에 대한 이전의 측정치와 일치하고, 로렌타이드 빙상의 가장자리에서 빙엽을 가리키는 다른 빙하의 엽들에 대해 실시되었던 실험과도 유사하였다 [6].

저자들은 빙하의 무게가 공극수의 높은 압력에 의해서 들려졌음에(buoyed up) 틀림없을 것으로, 그래서 이것은 표력토가 고결되기 전에 아마도 분산되게 하였을 것이라고 결론지었다. 그러나 점토층의 두께에 의존하여 완전한 고결이 몇 년 내에 일어나야만 하기 때문에, 이러한 현상은 일어나기가 매우 어려웠을 것이다. 만약 표력토가 충분히 고결되지 않았다면, 그때에는 배수층에 더 가까운 부분은 더 큰 고결도를 보여주어야 하며, 이것은 표력토 층의 측정 가능한 고결도의 변화를 가져와야만 했을 것이다.[10]

DML 형태학에 대한 이러한 재해석은 개정을 지지하는 그 어떤 물리적 증거도 없는 이론적인 연습인 것처럼 보인다. 그러나 로렌타이드 빙상 가장자리의 얼음이 아주 얇았다는 지형학적인 증거들이 있다. 예를 들면, 몬태나, 남부 앨버타, 남부 서스캐처원(southern Saskatchewan)으로부터 결코 결빙되지 않았던 구릉의 높이는 빙상 가장자리가 얇다는 추론을 강화시켜주고 있다. 이들 빙하로 완전히 둘러싸인 산들(nunataks)은[11] 캐나다와 남동부 앨버타의 서부 씨프레스 구릉지(western Cypress Hills)의 정상 100 m, 북중부 몬태나의 스윗그래스 구릉지(Sweetgrass Hills) 정상, 남중부 서스캐처원의 우드 마운틴 고원(Wood Mountain Plateau)의 빙산이 표류하지 않는 지역, 그리고 북동부 몬태나에 있는 인근 플락스빌 고원(Flaxville Plateau) 등을 포함한다. [12].

우드 마운틴과 플락스빌 고원은 주변 평지보다 단지 대략 100 m 높이에 있는데, 이것은 제한된 얼음 두께를 가리키고 있다. 빙하로 완전히 둘러싸인 산(nunataks)들에 대한 자료는 빙퇴석의 높이에 근거한(빙핵이 없었음을 가정하는) 고결도 측정과 형태학적 추론과 일치한다. 증거의 무게는 북중부 미국의 로렌타이드 빙상 가장자리에서의 빙엽이 얇았던 것을 제시하고 있다. 제한된 얼음의 무게로 인한 작은 측면 추진력으로 인해, 빙하는 북쪽으로부터 그다지 긴 거리를 이동하지 않았다.

데이터들 역시 빙하의 복원에 사용된 표준 연대측정 방법들, 특히 C-14 연대측정 방법이 의심스럽다는 것을 가리키고 있다. 만약 C-14 연대측정이 오염되지 않았거나, 일부 다른 메커니즘으로 인해 오류가 있었다면, 추론된 비교적 빠른 빙하의 유빙 속도는 창조론적 모델에서처럼 매우 빨랐을 가능성이 있다. 왜냐하면 C-14에 의한 연대는 다른 초기 조건들을 사용하여 대홍수의 시기 내로 끼워 넣어질 수 있기 때문이다.[13] 빙하 주변에서의 굉장히 빠른 유빙속도는 아래에 제시된 것처럼 해일의 견해(idea of surges)를 지지한다.

로렌타이드 빙상에 있는 더 얇은 가장자리는 빙상이 제 위치에서 다소간 크기가 더 커졌다는 빙하기에 대한 창조론적 모델을 지지한다.[14] 빙상들은 북 캐나다로부터 아래쪽으로 이동할 필요가 없었다.

얼음 가장자리에서 빙엽의 형성은 아마도 해일들을 가리킨다.[15]. 빙하 해일(glacial surge)은 보통의 속도에서 10에서 100배 정도로 그 속도를 증가시킨다 [16]. 빙하 해일은 아마도 기저부 물(basal water)의 증가와 관계가 있는데, 그것은 홍수 후 빠른 빙하기의 빙하 쇠퇴기 동안에 일어난 급격한 기후 온난화에서 더 있음직한 현상인 것이다. 해일은 더 얇은 가장자리를 형성시켰을 것이다. 그것은 추론되고 있는 낮은 가장자리 윤곽(low marginal profiles)을 부분적으로 설명할 수도 있다. 중부 캐나다에서의 증거로 인해 요즘 유행하고 있는 멀티돔 빙상 모델(multidomed ice sheet model)과 연결되어, 빙상의 얇은 가장자리는 얼음 부피가 오래된 연대 개념에서 추정했던 것보다 훨씬 더 적었음을 가리키고 있다. 그리고 이것은 대홍수 이후 빠르게 전개된 빙하기 모델과 일치하는 것이다. [17]

오래된 연대 개념에 의한 얼음층 두께와 부피는 빙상이 북부 캐나다로부터 아래쪽으로 이동하였고, 남극 대륙의 빙상들과 유사한 외형을 가지고 있다는 가정들 하에 주로 근거하고 있다. 그러나 이 두 가정들 모두 불합리하게 보이는 것이다.

출처 : TJ 18(2):5–6, August 2004

번역자 : IT 사역위원회

References and notes

참고 문헌및 메모

  1. Mathews, W.H., Surface profiles of the Laurentide Ice Sheet in its marginal areas, J. Glaciology 13(67):37–43, 1974. 텍스트로돌아 가기.
  2. Clark, P.U., Surface form of the southern Laurentide Ice Sheet and its implications to ice-sheet dynamics, Geological Society of America Bulletin 104:595–605, 1992. 텍스트로돌아 가기.
  3. Shear stress is the force parallel to a surface (in comparison to the normal stress, which acts perpendicular to the surface), such as the frictional force between a toboggan and a slope of snow. 텍스트로돌아 가기.
  4. Hooyer, T.S. and Iverson, N.L., Flow mechanism of the Des Moines lobe of the Laurentide Ice Sheet, J. Glaciology 48(163):575–586, 2002. 텍스트로돌아 가기.
  5. After the ice inside the moraine melted, the height of the moraine would drop. 텍스트로돌아 가기.
  6. Hooyer, ref. 4, p. 578. 텍스트로돌아 가기.
  7. A till is a glacial deposit of unsorted material ranging from clay to boulders, and it typically has a very low permeability. 텍스트로돌아 가기.
  8. An analogy would be the air cushion created under a hovercraft. The weight of the ice, which drives the motion downslope, due to gravity, would remain the same. 텍스트로돌아 가기.
  9. Initially an increase in load applied to a low-permeability soil will be balanced by an increase in pore pressure. Over time, the excess water pressure will drain away and the load will be transferred to the interconnected soil particles, causing consolidation of the clay. The clays should be overconsolidated relative to the current vertical stress from the overlying weight of soil (i.e. without the weight of the glacier). 텍스트로돌아 가기.
  10. Higher-permeability material below the clayey till. 텍스트로돌아 가기.
  11. Hills or mountains that stick up above, and are completely surrounded by, ice, such as the Trans Antarctic Mountains, are called nunataks. 텍스트로돌아 가기.
  12. Mathews, ref. 1, p. 39. 텍스트로돌아 가기.
  13. Morris, J.D., The Young Earth, Master Books, Green Forest, pp. 64–67, 1994. 텍스트로돌아 가기.
  14. Oard, M.J., An Ice Age Caused by the Genesis Flood, Institute for Creation Research, El Cajon, 1990. 텍스트로돌아 가기.
  15. Horstemeyer, M.F. and Gullet, P., Will mechanics allow a rapid Ice Age following the Flood; in: Ivey, R.L. (Ed.), Proc. 5th Int. Conf. Creationism, Creation Science Fellowship, Pittsburgh, pp. 165–174, 2003. 텍스트로돌아 가기.
  16. Sugden, D.E. and John, B.S., Glaciers and Landscape—A Geomorphological Approach, Edward Arnold, London, pp. 50–53, 1976. 텍스트로돌아 가기.
  17. Oard, ref. 14, pp. 98–107. 텍스트로돌아 가기.