Explore
Also Available in:

동일과정설 과학자들의 믿을 수 없는 얼음 코어 해석

번역 Korea Association for Creation Research 번역: 한국어창조과학회 (creation.kr)

http://www.creation.or.kr/library/itemview.asp?no=3699

https://creation.com/wild-ice-core-interpretations-by-uniformitarian-scientists

https://creation.com/a/1582

동일과정설 과학자들의 믿을 수 없는 얼음 코어 해석

(Wild ice-core interpretations by uniformitarian scientists)

에 의해 Michael J. Oard

요약

동일과정설(균일론) 과학자들은 오래된 연대를 가정하고 있기 때문에 그린란드 얼음 코어(ice cores, 빙핵)를 창조론자보다 더 많은 기간 동안의 ‘연륜층(annual layers, 연간 얼음층)’으로 해석한다. 두 패러다임 사이의 차이는 코어의 빙하기 부분의 해석에 대한 차이에서 나타난다. 동일과정설 과학자들은 산소 동위원소 비율(oxygen isotope ratio)의 커다란 변동은 북대서양 지역에서 온도 변동(fluctuations)이 컸기 때문인 것으로 해석한다. 이전 간빙기(interglacial) 동안의 그러한 커다란 변동은 반응강화 효과(reinforcement syndrome)를 유발하였고, 또 다른 커다란 변동들이 심해 코어(deep-sea cores)에서와 같은 다른 자료들에서도 발견되었다. 이들 간빙기 변동(interglacial fluctuations)은 온실가스의 증가로 인해 현재의 기후가 빠르게 변화하고 있다는 추측을 정당화하는 데에 사용되어 왔다. 이제 대부분의 과학자들은 간빙기 빙상 코어의 변동을 빙하류(ice flow)의 결과로 보고 있다. 동일과정설 과학자들은 아직도 거대한 빙하기 변동(Ice Age fluctuations)에 대해서 당황스러워 하고 있다. 반면에 창조과학자들은 산소 동위원소의 변동을 대홍수 후의 한 번의 짧은 빙하기(a short post-Flood Ice Age) 내에서 적어도 네 가지 방법으로 해석하고 있다. 즉, 계절적인 변화, 변동하는 화산재의 양에 따른 장기간에 걸친 기후 변화, 바다 얼음 양의 변화, 또는 대기순환의 변화에 의한 것일 수 있었다는 것이다.

-------------------------------------------------------------------------------------

이전 TJ 지의 비판기사 반론 글(article) 에서[1], 나는 그린란드 빙상(Greenland Ice Sheet)에서 채취한 새로운 얼음 코어 자료의 동일과정설적 해석과 창조론적 해석을 비교했었다. 이들 얼음 코어들은 유럽의 GRIP 코어와 미국의 GISP2 코어이며, 모두 빙상의 가장 높은 부분에서 시추한 것이었다. 동일과정설 과학자들은 빙상이 몇 백만 년 동안 거의 평형상태에 있었다고 가정한다. 따라서 빙상은 녹기도 하고 해양으로 빙산이 되어 떨어져 나간 손실량 만큼 강설로부터 많은 얼음과 눈을 축적하여 왔을 것으로 생각한다. 이 가정들에 기초하여, 그들은 110,000 년에 해당하는 연륜층(annual layers)들을 찾아내었다고 하였고, 그것이 나의 이전 글의 주제였다.[1]

추정하는 연륜층을 구하기 전에, 얼음 코어는 심해 코어에서 어떤 변동에 대해 보정된 코어 상의 두 지점에 대한 유동모델(flow modeling)에 의해서 연대가 측정된다. 이 지점 중 하나는 그림 1에 볼 수 있는 것처럼 Younger Dryas (YD) fluctuation (약 12,000년 전에 북 대서양과 북미, 북유럽 지역에 1300년간 계속 되었다는 소빙하기)이고, 두 번째 지점은 심해 코어에서 5번째 단계이다. 케이그윈(Keigwin) 등은 다음과 같이 말한다.

”얼음 코어 연대는 단스가드(Dansgaard) 등이 논의한대로, 굵은 수직선이(그들의 그림 2에서) 표시하고 있는 대로 110,000 년 수준의(5d 단계) 심해 연대와 일치한다.” [2]

게다가, 심해 코어(deep-sea cores)들은 주기적인 지구궤도 변수(cyclical Earth orbital parameters)들에 기초한 천문학적 빙하기 이론으로 보정되어 있다. 이 주기적 변화는 과거 250만 년 동안의 지질시대 동안에 빙하기와 간빙기의 변화(glacial and interglacial oscillations)를 초래한 것으로 추정하고 있다. 심해 코어에 대한 토륨 연대측정법(thorium dating technique)을 논의하면서, 레흐만(Scott Lehman)은 지적하기를[3] ”그들의 기법은 아직도 궤도변화 시점의 정확성에 대부분 의존하고 있다”라고 했다. 이것은 여러 가지 데이터들이 일치하는 것처럼 보이기 위하여 적절히 손질한 또 하나의 사례인 것이다.[4]

반면에, 창조론자들의 해석은 홍수 후 700년 간의 급속한 빙하기 동안 그린란드 얼음 코어가 형성되었고, 그 이후 현재 기후가 되었다고 생각한다. 이 모델에서 빙상(ice sheet)에서의 연륜층(annual layers)들은 빙하기 부분에서 훨씬 더 두꺼웠을 것이고, 동일과정설에서 주장하는 연륜층들은 일 년이 아닌 아일년(subannual)에 해당하는 얼음층들이고, 어떤 것은 일회의 강설에 해당할 것이라는 것이다. 내가 쓴 ‘비평기사의 반론’ 글[1] 그림 3은 이 두 모델에서 코어의 연륜층 두께 차이를 대비해 놓았다.

그 림 1. 중부 그린란드(central Greenland)의 GRIP 얼음 코어의 산소 동위원소 비율 (Wolff 등).[5] 동일과정설적 해석에 따르면, 충적세(Holocene)는 지난 10,000 년 정도의 기간에 해당하고, YD는 Younger Dryas 소빙하기(cold period) 이며, A/B는 Allerod/Bolling 온난기(warm period)이고, 5a–d는 마지막 빙하기의 초기이며, Eem은 이전의 간빙기(previous interglacial)에 해당한다. 반면에 창조론자들의 해석에 따르면, 충적세는 지난 4000년 동안인 빙하기 이후(post-Ice-Age)에 해당하고 (약 1,500m의 얼음층), 그 아래의 얼음층 전부는 홍수 후의 짧은 빙하기(post-Flood Ice Age)에 해당한다. 유의할 것은 코어의 빙하 부분(glacial part)에서 산소 동위원소 비율(oxygen isotope ratio)의 변화가 크고 갑작스럽다는 점이다.

그림 1은 GRIP 코어의[5] 산소동위원소 비율을 동일과정론자와 창조론자 양 쪽에서 해석한 것을 함께 보여주고 있다.[6] 산소 동위원소 비율은 일반적으로 온도와 상관관계가 있어서[7], 온도가 내려갈수록 산소 동위원소 비율은 낮아지게(negative) 된다. 따라서 코어의 빙하기 부분은 1,500m 아래쪽 이다. 유의할 점은 빙하기 동안의 산소 동위원소 변동(oxygen isotope fluctuations) 폭이 현저하게 크다는 것이다. 미래 기후변화에 대한 동일과정설적 의미와 함께, 이들 빙하기 변동들과 그들의 해석이 이 글의 주제이다.

큰변동폭에대한믿을수없는해석

빙하기의 큰 변동폭(wild Ice Age fluctuations)은 동일과정설적 해석에 심각한 문제를 야기시키고 있다. 산소 동위원소 비율의 급격한 변화로 인하여 동일과정설 과학자들은 이제 그린란드의 온도가 1년 내지 3년의 기간 동안에 20°C까지 변했음을 믿지 않을 수 없게 되었다![8] 이것은 매우 파격적인 해석이지만, 그들의 가정 때문에 그것을 받아들일 수밖에 없게 되었다. 이 변화는 북 대서양 주위에 기후를 대표한다고 생각되므로[9], 이 지역의 기후가 급격히 변했던 것으로 볼 수밖에 없다. 어떤 과정이 심지어 빙하기 동안에 그런 급격한 변화를 만들 수 있었을까? 과학자들은 어떤 메커니즘이 그런 치명적인 기후 변화를 초래했던 것인지 필사적으로 찾고 있다. 그러나 이러한 급격한 변동은 동일과정설 해석에 오류가 있다는 것을 가리키고 있는 것이다.

동일과정설적 해석에 따르면, 이전의 Eem 간빙기 코어 부분도 산소 동위원소 비율의 변화가(그림 1) 매우 급격함을 보이는 것은 흥미롭다. 이것은 간빙기 동안의 격변적인 기후변화로 해석된다.[10] 이 급격한 기후변동은 이 기간에 해당되는 심해 코어(deep sea cores)와 호수의 화분 데이타(lake pollen data)에서도 나중에 발견되었다.[11] 그러나, GRIP 코어의 이 부분은 나중에 GISP2 코어와 비교하여 얼음 흐름의 동요(ice-flow disturbance) 때문에 만들어진 것이라고 주장되었다.[3] 다른 자료들에서 최초에 주장되던 몇몇 격변적인 기후변화가 지금은 의심스럽게 된 것은 또 하나의 흥미거리이다.[3] 그러나, 빙하기 부분에서 아직도 가정되고 있는 빠른 변동은 다른 데이터들에서는 여전히 유효하다. 산테인(Sarnthein) 등에 의하면:

”1990년대 초 그린란드 정상 코어로부터의 첫 번째 발견 이후, 이 예상외의 기후 변화는 극지 빙상, 대서양, 태평양, 인도양의 해저 퇴적물들, 그리고 육상의 호수와 습지 등을 포함하는 여러 곳에서 발견되어왔다.”[12]

다른 자료들에서 이러한 급격한 기후변동을 갑작스럽게 발견하게 되는 것과, 이전의 간빙기에 대해서 갑작스럽게 의구심이 제기되는 것은 편재하는 반응강화 증후군(reinforcement syndrome, 하나의 가설 또는 결과가 그 다음의 자료에 의해서 반복적으로 강화되어 가는 현상)의 한 예인 것처럼 보인다.[13] 동일과정설의 관점은 근본적으로 다른 해석들도 잘 수용할 수 있는 것처럼 보인다.

제일 밑바닥 코어에 대한 해석과 관계없이, 만일 그러한 변동이 빙하기 동안에 또는 심지어 간빙기 동안에 발생할 수 있었다면, 그것은 현재도 발생할 수 있다는 다수의 논문들이 나오고 있다. 많은 논문들은 지구온난화가 기후를 심히 교란하여 심지어 빙하기를 촉발할 수도 있을 것으로 보고 있다. 테일러(Kendrick Taylor)는 다음과 같이 묻고 있다 :

”새로운 증거는 지구의 기후가 단지 10년 동안에 극적으로 바뀔 수도 있음을 나타낸다. 온실 가스가 그 스위치를 누를 수 있을 것인가?” [14]

어느 대중적인 기사에서 칼빈(William Calvin)은 더욱 심각히 쓰고 있다 :

”그러나 역설적으로 온난화는 문명의 생존을 위협할 정도의 격변적 냉각화를 불러올지도 모른다.”[15]

결국, 동일과정설적 생각에 의하면 따뜻해지는 기후가 급격히 한랭한 기후를 촉발할 수도 있다는 것이다.

과거에건 미래에건 그런 근본적인 기후 변화의 주요한 메커니즘은 대서양의 해류 순환이 차단되어 난류가 북쪽 그린란드와 유럽으로 흐르지 않게 되는 것이다.[16] 인류의 탄산가스 배출 증가에 기인하여 시발된다는 이 메커니즘은 억지스런 것처럼 보인다.

얼음코어의변동에대한창조론자의해석

이들 산소 동위원소의 급격한 변동(rapid fluctuations)은 동일과정설 모델로는 설명하기 어렵다. 산테인(Sarnthein) 등은 인정하기를, ”최근 신생대 제4기 동안의 크고도 급격한 10년 단위의 기후변화의 원인은 수수께끼이다.”[17]

그림 2. 빙하기 정점까지의 가정되는 홍수 후 화산활동 (Oard의 자료).[22]

어떻게 창조론자들은 코어의 빙하기 부분 동안의 큰 변동 폭을 해석할 것인가? 첫 번째 가능성으로, 창조론 모델에서 연륜층은 훨씬 두꺼웠을 것이기 때문에, 산소 동위원소의 큰 변동 폭이 연륜층일 수 있다는 것이다. 그러나 일부 변동 폭은 두께가 50m에 이르기 때문에, 1 년 이상 지속되었을 수도 있었을 것이다.

두 번째 가능성으로, 이 상대적으로 오래 지속된 변동은 성층권에서 변화하는 화산재와 에어로졸 부하(variable volcanic dust and aerosol loads)를 반영할 수 있다는 것이다. 그림 2는 빙하기 정점까지 추정되는 홍수 후 화산활동을 보여주고 있다.[18] 점진적인 저하 추세를 보이면서 톱날처럼 오르락내리락 하는 경향을 주의해 볼 필요가 있다. 최고 화산활동(최고점) 동안에 온도는 여러 해 동안 더 추워졌을 것이다. 이것은 그린란드 얼음 코어에서 더 낮은 수치의 산소 동위원소 값과 부합한다. 더 따뜻한 기간은 성층권에서 화산재와 에어로졸의 감소에 기인했을 것이다.

세 번째 가능성으로, 바다얼음의 변화(changes in sea ice)들이 산소 동위원소 비율에 영향을 미쳐서 변동을 초래할 수 있었다는 것이다.[19] 바다얼음의 양이 많아지면 산소 동위원소 비율은 더 감소하고 반대의 경우 증가할 것이다. 나는 노아 홍수 후에 따뜻한 대양이 식어서 바다얼음이 형성될 때까지는 상당한 기간이 걸렸을 것이므로, 이 과정은 빙하기 말에 일어났을 것으로 본다.[20] 그러나 이 메커니즘이 빙하기 후반의 Younger Dryas와 Allerod/Bolling 변동들의 원인일 수도 있다.

네 번째 가능성으로, 급격한 변동은 아마도 위의 세 가지 메커니즘의 어느 것과 관련되거나 강화된 변화하는 대기 순환(changing atmospheric circulation)을 반영한다는 것이다. 이것은 온도가 산소 동위원소 비율에 영향을 미치는 여러 변수들 중에서 단지 하나일 뿐이기 때문이다.[7, 21] 동일과정설 과학자들은 대게 산소 동위원소 비율을 주로 온도 변동으로만 해석한다.

결론

동일과정설 과학자들은 빙하기의 산소 동위원소 비율의 과격한 등락(wild oscillations)이 북대서양 지역에서의 격변적인 온도의 변화 때문이라고 해석한다. 그들은 이것을 사용하여 온실가스 증가 때문에 현재의 기후가 빠르게 변할 것이라는 추측을 정당화하기도 한다. 여기서 문제들이 생겨나는 주된 원인은 동일과정설의 길게 늘여진 시간척도 때문이다. 창조론 모델에서는[1] 큰 변동 폭을 빙하기 기간동안의 여러 가지 사건들로 설명할 수 있다. 코어의 빙하기 부분의 훨씬 더 두꺼운 연륜층들에서, 등락은 단순히 일 년 중 계절적인 온도변화이거나, 또는 성층권의 화산재에 기인하는 더 긴 기간 동안의 온도변화에 기인하는 것일 수 있다. 얼음 코어의 해석은 동일한 자료로부터도 다른 가정들을 사용하면, 상당히 다른 결론을 초래할 수 있다는 또 하나의 예가 되고 있는 것이다.

*참조: Do Greenland ice cores show over one hundred thousand years of annual layers?

http://creationontheweb.com/content/view/1816

Rapid changes in oxygen isotope content of ice cores

http://creationontheweb.com/content/view/1545

A Proposed Mesoscale Simulation of Precipitation in Yosemite National Park with a Warm Ocean

http://www.icr.org/i/pdf/research/ICC08_Sim_Precip_Yosemite.pdf

Greenland ice cores: implicit evidence for catastrophic deposition

http://creationontheweb.com/content/view/5795/

Ice cores vs the Flood

http://creationontheweb.com/content/view/1573

출처 : TJ 16(1):45–47, April 2002

번역자 : IT 사역위원회

References

참고 문헌및 메모

  1. Oard, M.J., Do Greenland ice cores show over one hundred thousand years of annual layers?TJ15(3):39–42, 2001. 텍스트로돌아 가기.
  2. Keigwin, L.D., Curry, W.B., Lehman, S.J. and Johnsen, S., The role of the deep ocean in North Atlantic climate change between 70 and 130 kyr ago, Nature371:323–326, p. 324, 1994. 텍스트로돌아 가기.
  3. Lehman, S., Sudden end of an interglacial, Nature390:117–118, p. 119, 1997. 텍스트로돌아 가기.
  4. Oard, M.J., The supposed consistency of evolution’s long ages, TJ15(3):3–4, 2001. 텍스트로돌아 가기.
  5. Wolff et al., Long-term changes in the acid and salt concentrations of the Greenland Ice Core Project ice core from electrical stratigraphy, J. Geophysical Research100(B8):16249–16263, p. 16252, 1995. 텍스트로돌아 가기.
  6. See Oard, Ref. 1 for the meaning of oxygen isotope ratios. 텍스트로돌아 가기.
  7. Dansgaard, W., The isotopic composition of natural waters with special reference to the Greenland Ice Cap, Meddelelser Om Gronland165(2):7–120, 1961. 텍스트로돌아 가기.
  8. Hammer, C., Mayewski, P.A., Peel, D. and Stuiver, M., Preface to special issue, J. Geophysical Research102(C12):26315–26316, 1997. 텍스트로돌아 가기.
  9. Haflidason, H., Sejrup, H.P., Kristensen, D.K. and Johnsen, S., Coupled response of the late glacial climatic shifts of northwest Europe reflected in Greenland ice cores: evidence from the northern North Sea, Geology12(12):1059–1062, 1995. 텍스트로돌아 가기.
  10. Greenland Ice-Core Project (GRIP) members, Climate instability during the last interglacial period recorded in the GRIP ice core, Nature364:203–207, 1993. 텍스트로돌아 가기.
  11. Oard, M.J., A tale of two Greenland ice cores, CEN Tech. J. 9(2):135–136, 1995. 텍스트로돌아 가기.
  12. Sarnthein et al., Exploring Late Pleistocene climate variations, EOS81(51):625, 629, 630, 2000; p. 625. 텍스트로돌아 가기.
  13. Oard, M.J., Ancient Ice Ages or Gigantic Submarine Landslides? Creation Research Society Monograph 6, Creation Research Society, St. Joseph, pp. 11–13, 1997. 텍스트로돌아 가기.
  14. Taylor, K., Rapid climate change, American Scientist87:320–327, 1999. 텍스트로돌아 가기.
  15. Calvin, W.H., The great climate flip-flop, Atlantic Monthly281(1):47–64, 1998. 텍스트로돌아 가기.
  16. Broecker, W.S., Thermohaline circulation, the Achilles heel of our climate system: will man-made CO2 upset the current balance? Science278:1582–1588, 1997. 텍스트로돌아 가기.
  17. Sarnthein et al., Ref. 12, p. 625. 텍스트로돌아 가기.
  18. Oard, M.J., An Ice Age Caused by the Genesis Flood, Institute for Creation Research, El Cajon, p. 68, 1990. 텍스트로돌아 가기.
  19. Vardiman, L., Rapid changes in oxygen isotope content of ice cores caused by fractionation and trajectory dispersion near the edge of an ice shelf, CEN Tech. J.11(1):52–60, 1997. 텍스트로돌아 가기.
  20. Oard, Ref. 18, p. 112. 텍스트로돌아 가기.
  21. Dansgaard, W., Stable isotopes in precipitation, Tellus14:436–468, 1964. 텍스트로돌아 가기.
  22. Oard, Ref. 18, p. 68. 텍스트로돌아 가기.